Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T23:26:38.643Z Has data issue: false hasContentIssue false

Quantum photonic networks in diamond

Published online by Cambridge University Press:  06 February 2013

Marko Lončar
Affiliation:
School of Engineering and Applied Sciences, Harvard University; loncar@seas.harvard.edu
Andrei Faraon
Affiliation:
Applied Physics and Materials Science, California Institute of Technology; faraon@caltech.edu
Get access

Abstract

Advances in nanotechnology have enabled the opportunity to fabricate nanoscale optical devices and chip-scale systems in diamond that can generate, manipulate, and store optical signals at the single-photon level. In particular, nanophotonics has emerged as a powerful interface between optical elements such as optical fibers and lenses, and solid-state quantum objects such as luminescent color centers in diamond that can be used effectively to manipulate quantum information. While quantum science and technology has been the main driving force behind recent interest in diamond nanophotonics, such a platform would have many applications that go well beyond the quantum realm. For example, diamond’s transparency over a wide wavelength range, large third-order nonlinearity, and excellent thermal properties are of great interest for the implementation of frequency combs and integrated Raman lasers. Diamond is also an inert material that makes it well suited for biological applications and for devices that must operate in harsh environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., Scarsbrook, G.A., Science 297, 1670 (2002).Google Scholar
Feve, J.-P.M., Shortoff, K.E., Bohn, M.J., Brasseur, J.K., Opt. Exp. 19, 913 (2011).Google Scholar
Zaitsev, A.M., Optical Properties of Diamond: A Data Handbook (Springer-Verlag, Germany, 2001).Google Scholar
Maurer, P.C., Kucsko, G., Latta, C., Jiang, L., Yao, N.Y., Bennett, S.D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D.J., Cirac, J.I., Lukin, M.D., Science 336, 1283 (2012).Google Scholar
Dutt, M.V.G., Childress, L., Jiang, L., Togan, E., Maze, J., Jelezko, F., Zibrov, A.S., Hemmer, P.R., Lukin, M.D., Science 316, 1312 (2007).CrossRefGoogle Scholar
Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D., Science 326, 267 (2009).Google Scholar
van der Sar, T., Wang, Z.H., Blok, M.S., Bernien, H., Taminiau, T.H., Toyli, D.M., Lidar, D.A., Awschalom, D., Hanson, R., Dobrovitski, V.V., Nature 484, 82 (2012).Google Scholar
Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D., Nature 466, 730 (2010).Google Scholar
Purcell, E.M., Phys. Rev. 69, 681 (1946).Google Scholar
Balasubramanian, G., Chan, I.Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Nature 455, 648 (2008).Google Scholar
Maze, J.R., Stanwix, P.L., Hodges, J.S., Hong, S., Taylor, J.M., Cappellaro, P., Jiang, L., Gurudev Dutt, M.V., Togan, E., Zibrov, A.S., Yacoby, A., Walsworth, R.L., Lukin, M.D., Nature 455, 644 (2008).Google Scholar
Robledo, L., Childress, L., Bernien, H., Hensen, B., Alkemade, P.F.A., Hanson, R., Nature 477, 574 (2011).Google Scholar
Bernien, H., Childress, L., Robledo, L., Markham, M., Twitchen, D., Hanson, R., Phys. Rev. Lett. 108, 043604 (2012).Google Scholar
Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J., Science 320, 1326 (2008).Google Scholar
Park, Y.-S., Cook, A.K., Wang, H., Nano Lett. 6, 2075 (2006).Google Scholar
Englund, D., Shields, B., Rivoire, K., Hatami, F., Vučković, J., Park, H., Lukin, M.D., Nano Lett. 10, 3922 (2010).Google Scholar
van der Sar, T., Hagemeier, J., Pfaff, W., Heeres, E.C., Thon, S.M., Kim, H., Petroff, P.M., Oosterkamp, T.H., Bouwmeester, D., Hanson, R., App. Phys. Lett. 98, 193103 (2011).Google Scholar
Barclay, P.E., Fu, K.-M., Santori, C., Beausoleil, R.G., Opt. Express 17, 9588 (2009).Google Scholar
Barclay, P.E., Fu, K.-M.C., Santori, C., Beausoleil, R.G., Appl. Phys. Lett. 95, 191115 (2009).Google Scholar
Barclay, P.E., Santori, C., Fu, K.-M., Beausoleil, R.G., Painter, O., Opt. Express 17, 8081 (2009).Google Scholar
Schietinger, S., Barth, M., Aichele, T., Benson, O., Nano Lett. 9, 1694 (2009).Google Scholar
Hausmann, B., Khan, M., Zhang, Y., Babinec, T.M., Martinick, K., McCutcheon, M., Hemmer, P.R., Loncar, M., Diam. Relat. Mater. 19, 621 (2010).Google Scholar
Babinec, T., Hausmann, B.M., Khan, M., Zhang, Y., Maze, J., Hemmer, P.R., Loncar, M., Nature Nanotech. 5, 195 (2010).Google Scholar
Maletinsky, P., Hong, S., Grinolds, M.S., Hausmann, B., Lukin, M.D., Walsworth, R.L., Loncar, M., Yacoby, A., Nature Nanotechnol. 7, 320 (2012).Google Scholar
Siyushev, P., Kaiser, F., Jacques, V., Gerhardt, I., Bischof, S., Fedder, H., Dodson, J., Markham, M., Twitchen, D., Jelezko, F., Wrachtrup, J., Appl. Phys. Lett. 97, 241902 (2010).Google Scholar
Hadden, J.P., Harrison, J.P., Stanley-Clarke, A.C., Marseglia, L., Ho, Y.-L.D., Patton, B.R., O’Brien, J.L., Rarity, J.G., Appl. Phys. Lett. 97, 241901 (2010).Google Scholar
Vahala, K.J., Nature 424, 839 (2003).Google Scholar
Bulu, I., Babinec, T., Hausmann, B., Choy, J.T., Loncar, M., Opt. Express 19, 5268 (2011).Google Scholar
Choy, J.T., Hausmann, B.J.M., Babinec, T.M., Bulu, I., Khan, M., Maletinsky, P., Yacoby, A., Loncar, M., Nat. Photon. 5, 738 (2011).Google Scholar
Aharonovich, I., Greentree, A.D., Prawer, S., Nature Photon. 5, 397 (2011).Google Scholar
Magyar, A.P., Lee, J.C., Limarga, A.M., Aharonovich, I., Rol, F., Clarke, D.R., Huang, M., Hu, E.L., Appl. Phys. Lett. 99, 081913 (2011).Google Scholar
Bayn, I., Meyler, B., Lahav, A., Salzman, J., Kalish, R., Fairchild, B.A., Prawer, S., Barth, M., Benson, O., Wolf, T., Siyushev, P., Jelezko, F., Wrachtrup, J., Diam. Relat. Mater. 20, 937 (2011).Google Scholar
Gsell, S., Bauer, T., Goldfuss, J., Shreck, M., Strizker, B., Appl. Phys. Lett. 84, 4541 (2004).Google Scholar
Riedrich-Möller, J., Kipfstuhl, L., Hepp, C., Neu, E., Pauly, C., Mücklich, F., Baur, A., Wandt, M., Wolff, S., Fischer, M., Gsell, S., Schreck, M., Becher, C., Nature Nanotech. 7, 69 (2012).Google Scholar
Babinec, T., Choy, J.T., Smith, K., Khan, M., Loncar, M., J. Vac. Sci. Technol. B 29, 010601 (2011).Google Scholar
Bayn, I., Meyler, B., Salzman, J., Kalish, R., New J. Phys. 13, 025018 (2011).Google Scholar
Faraon, A., Barclay, P.E., Santori, C., Fu, K.-M.C., Beausoleil, R.G., Nature Photon. 5, 301 (2011).Google Scholar
Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.G., Phys. Rev. Lett. 109, 033604 (2012).Google Scholar
Hausmann, B.M., Shields, B., Quan, Q., Maletinsky, P., McCutcheon, M., Choy, J.T., Babinec, T.M., Kubanek, A., Yacoby, A., Lukin, M.D., Loncar, M., Nano Lett. 12, 1578 (2012).Google Scholar
Burek, M.J., de Leon, N.P., Shields, B.J., Hausmann, B.J., Chu, Y., Quan, Q., Zibrov, A.S., Park, H., Lukin, M.D., Loncar, M., Nano Lett. 12, 6084 (2012).Google Scholar