Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T05:00:50.152Z Has data issue: false hasContentIssue false

Rheological properties of engineered protein polymer networks

Published online by Cambridge University Press:  10 December 2020

Winnie H. Shi
Affiliation:
Department of Chemical and Biomolecular Engineering, Rice University, USA; whs2@rice.edu
Taniya M.S.K. Pathiranage
Affiliation:
Rice University, USA; tk37@rice.edu
Amanda B. Marciel
Affiliation:
Department of Chemical and Biomolecular Engineering, Rice University, USA; Am152@rice.edu
Get access

Abstract

The linear and nonlinear mechanical properties of recombinant protein polymer networks are reviewed, with particular emphasis on how to tune elastic and dissipative behavior through selection of cross-linking strategy. The design strategies used to produce modular recombinant protein polymer networks through chemical or physical cross-linking will be discussed. In particular, we will highlight how key parameters such as polymer concentration, molecular weight, architecture, cross-link density, and association strength influence mechanics of protein polymer networks. Tuning these parameters enables control of viscoelastic properties and formation of materials with applications in tissue engineering, drug delivery, and sustainable self-healing materials.

Type
Engineered Proteins as Multifunctional Materials
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, L., Charati, M.B., Kiick, K.L., Polym. Chem. 1 (8), 1160 (2010).CrossRefGoogle Scholar
Yan, C., Pochan, D.J., Chem. Soc. Rev. 39 (9), 3528 (2010).CrossRefGoogle Scholar
Li, Y., Xue, B., Cao, Y., ACS Macro Lett. 9 (4), 512 (2020).CrossRefGoogle Scholar
Dooling, L.J., Tirrell, D.A., ACS Cent. Sci. (2016), doi:10.1021/acscentsci.6b00205.Google Scholar
Lin, C.-Y., Liu, J.C., Curr. Opin. Biotechnol. 40, 56 (2016).CrossRefGoogle Scholar
Yang, Y.J., Holmberg, A.L., Olsen, B.D., Annu. Rev. Chem. Biomol. Eng. 8 (1), 549 (2017).CrossRefGoogle Scholar
DiMarco, R.L., Heilshorn, S.C., Adv. Mater. 24 (29), 3923 (2012).CrossRefGoogle Scholar
Grove, T.Z., Regan, L., Curr. Opin. Struct. Biol. 22 (4), 451 (2012).CrossRefGoogle Scholar
Straley, K.S., Heilshorn, S.C., Soft Matter (2009), doi:10.1039/b808504h.Google Scholar
Rubinstein, M., Colby, R.H., Polymer Physics (Oxford University Press, Oxford, UK, 2003).Google Scholar
Chaudhuri, O., Biomater. Sci. 5 (8), 1480 (2017).CrossRefGoogle Scholar
Chambon, F., Winter, H.H., Polym. Bull. 13 (6), (1985).CrossRefGoogle Scholar
Stauffer, D., J. Chem. Soc. Faraday Trans. 2 72, 1354 (1976).CrossRefGoogle Scholar
Stockmayer, W.H., J. Chem. Phys. 11 (2), 45 (1943).CrossRefGoogle Scholar
Flory, P.J., J. Am. Chem. Soc. 63 (11), 3083 (1941).CrossRefGoogle Scholar
De Gennes, P.G., J. Phys. Lett. 37 (1), 1 (1976).CrossRefGoogle Scholar
Stockmayer, W.H., J. Chem. Phys. 12 (4), 125 (1944).CrossRefGoogle Scholar
Flory, P.J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).Google Scholar
Hiemenz, P.C., Lodge, T.P., Polymer Chemistry, 2nd ed. (CRC Press, Boca Raton, FL, 2007), doi:10.1201/9781420018271.CrossRefGoogle Scholar
Larson, R.G., The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).Google Scholar
Zhang, Z., Chen, Q., Colby, R.H., Soft Matter 14 (16), 2961 (2018).CrossRefGoogle Scholar
Broedersz, C.P., MacKintosh, F.C., Rev. Mod. Phys. 86 (3), 995 (2014).CrossRefGoogle Scholar
Cai, L., Heilshorn, S.C., Acta Biomater. 10 (4), 1751 (2014).CrossRefGoogle Scholar
MacEwan, S.R., Chilkoti, A., Biopolymers 94 (1), 60 (2010).CrossRefGoogle ScholarPubMed
Li, H., Cao, Y., Acc. Chem. Res. 43 (10), 1331 (2010).CrossRefGoogle Scholar
Meyer, D.E., Chilkoti, A., Biomacromolecules 5 (3), 846 (2004).CrossRefGoogle Scholar
Betre, H., Setton, L.A., Meyer, D.E., Chilkoti, A., Biomacromolecules 3 (5), 910 (2002).CrossRefGoogle Scholar
Madl, C.M., Katz, L.M., Heilshorn, S.C., Adv. Funct. Mater. 26 (21), 3612 (2016).CrossRefGoogle Scholar
Di Zio, K., Tirrell, D.A., Macromolecules 36 (5), 1553 (2003).CrossRefGoogle Scholar
Nowatzki, P.J., Tirrell, D.A., Biomaterials 25 (7), 1261 (2004).CrossRefGoogle Scholar
Chung, C., Anderson, E., Pera, R.R., Pruitt, B.L., Heilshorn, S.C., Soft Matter 8 (39), 10141 (2012).CrossRefGoogle Scholar
Chung, C., Lampe, K.J., Heilshorn, S.C., Biomacromolecules 13 (12), 3912 (2012).CrossRefGoogle Scholar
Zhang, Y.-N., Avery, R.K., Vallmajo-Martin, Q., Assmann, A., Vegh, A., Memic, A., Olsen, B.D., Annabi, N., Khademhosseini, A., Adv. Funct. Mater. 25 (30), 4814 (2015).CrossRefGoogle Scholar
Lim, D.W., Nettles, D.L., Setton, L.A., Chilkoti, A., Biomacromolecules 8 (5), 1463 (2007).CrossRefGoogle Scholar
Trabbic-Carlson, K., Setton, L.A., Chilkoti, A., Biomacromolecules 4 (3), 572 (2003).CrossRefGoogle Scholar
Lim, D.W., Nettles, D.L., Setton, L.A., Chilkoti, A., Biomacromolecules 9 (1), 222 (2008).CrossRefGoogle Scholar
Sallach, R.E., Cui, W., Wen, J., Martinez, A., Conticello, V.P., Chaikof, E.L., Biomaterials 30 (3), 409 (2009).CrossRefGoogle Scholar
Urry, D.W., Luan, C.H., Parker, T.M., Channe Gowde, D., Prasad, K.U., Reid, M.C., Safavy, A., J. Am. Chem. Soc. 113 (11), 4346 (1991).CrossRefGoogle Scholar
Elvin, C.M., Carr, A.G., Huson, M.G., Maxwell, J.M., Pearson, R.D., Vuocolo, T., Liyou, N.E., Wong, D.C.C., Merritt, D.J., Dixon, N.E., Nature 437 (7061), 999 (2005).CrossRefGoogle Scholar
Lyons, R.E., Nairn, K.M., Huson, M.G., Kim, M., Dumsday, G., Elvin, C.M., Biomacromolecules 10 (11), 3009 (2009).CrossRefGoogle Scholar
Charati, M.B., Ifkovits, J.L., Burdick, J.A., Linhardt, J.G., Kiick, K.L., Soft Matter 5 (18), 3412 (2009).CrossRefGoogle Scholar
Li, L., Teller, S., Clifton, R.J., Jia, X., Kiick, K.L., Biomacromolecules 12 (6), 2302 (2011).CrossRefGoogle Scholar
Li, L., Mahara, A., Tong, Z., Levenson, E.A., McGann, C.L., Jia, X., Yamaoka, T., Kiick, K.L., Adv. Healthc. Mater. 5 (2), 266 (2016).CrossRefGoogle ScholarPubMed
McGann, C.L., Akins, R.E., Kiick, K.L., Biomacromolecules 17 (1), 128 (2016).CrossRefGoogle Scholar
Cao, Y., Li, H., Nat. Mater. 6 (2), 109 (2007).CrossRefGoogle Scholar
Fang, J., Li, H., Langmuir 28 (21), 8260 (2012).CrossRefGoogle Scholar
Fang, J., Mehlich, A., Koga, N., Huang, J., Koga, R., Gao, X., Hu, C., Jin, C., Rief, M., Kast, J., Baker, D., Li, H., Nat. Commun. 4 (1), 2974 (2013).CrossRefGoogle Scholar
da Silva, M.A., Lenton, S., Hughes, M., Brockwell, D.J., Dougan, L., Biomacromolecules 18 (2), 636 (2017).CrossRefGoogle Scholar
Lv, S., Dudek, D.M., Cao, Y., Balamurali, M.M., Gosline, J., Li, H., Nature 465 (7294), 69 (2010).CrossRefGoogle Scholar
Lv, S., Bu, T., Kayser, J., Bausch, A., Li, H., Acta Biomater. 9 (5), 6481 (2013).CrossRefGoogle Scholar
Guvendiren, M., Lu, H.D., Burdick, J.A., Soft Matter 8 (2), 260 (2012).CrossRefGoogle Scholar
Petka, W.A., Harden, J.L., McGrath, K.P., Wirtz, D., Tirrell, D.A., Science 281 (5375), 389 (1998).CrossRefGoogle Scholar
Wang, H., Heilshorn, S.C., Adv. Mater. 27 (25), 3717 (2015).CrossRefGoogle Scholar
Kopeček, J., Yang, J., Angew. Chem. Int. Ed. 51 (30), 7396 (2012).Google Scholar
van Hest, J.C.M., Tirrell, D.A., Chem. Commun. 19, 1897 (2001).CrossRefGoogle Scholar
Banta, S., Wheeldon, I.R., Blenner, M., Annu. Rev. Biomed. Eng. (2010), doi:10.1146/annurev-bioeng-070909-105334.Google Scholar
Xu, C., Breedveld, V., Kopeček, J., Biomacromolecules 6 (3), 1739 (2005).CrossRefGoogle Scholar
Shen, W., Zhang, K., Kornfield, J.A., Tirrell, D.A., Nat. Mater. 5 (2), 153 (2006).CrossRefGoogle Scholar
Shen, W., Kornfield, J.A., Tirrell, D.A., Soft Matter 3 (1), 99 (2007).CrossRefGoogle Scholar
Teles, H., Skrzeszewska, P.J., Werten, M.W.T., van der Gucht, J., Eggink, G., de Wolf, F.A., Soft Matter 6 (19), 4681 (2010).CrossRefGoogle Scholar
Annable, T., Buscall, R., Ettelaie, R., Whittlestone, D., J. Rheol. (N.Y.N.Y.). 37 (4), 695 (1993).CrossRefGoogle Scholar
Shen, W., Kornfield, J.A., Tirrell, D.A., Macromolecules 40 (3), 689 (2007).CrossRefGoogle Scholar
Olsen, B.D., Kornfield, J.A., Tirrell, D.A., Macromolecules (2010), doi:10.1021/ma101434a.Google Scholar
Sing, M.K., Glassman, M.J., Vronay-Ruggles, X.T., Burghardt, W.R., Olsen, B.D., Soft Matter 13 (45), 8511 (2017).CrossRefGoogle Scholar
Sun, W., Duan, T., Cao, Y., Li, H., Biomacromolecules (2019), doi:10.1021/acs.biomac.9b01114.Google ScholarPubMed
Dooling, L.J., Buck, M.E., Zhang, W.-B., Tirrell, D.A., Adv. Mater. 28 (23), 4651 (2016).CrossRefGoogle Scholar
Lu, H.D., Charati, M.B., Kim, I.L., Burdick, J.A., Biomaterials 33 (7), 2145 (2012).CrossRefGoogle Scholar
Zhang, X., Chu, X., Wang, L., Wang, H., Liang, G., Zhang, J., Long, J., Yang, Z., Angew. Chem. Int. Ed. 51 (18), 4388 (2012).Google Scholar
Wu, J., Li, P., Dong, C., Jiang, H., Xue, B., Gao, X., Qin, M., Wang, W., Chen, B., Cao, Y., Nat. Commun. 9 (1), 620 (2018).CrossRefGoogle Scholar
Ito, F., Usui, K., Kawahara, D., Suenaga, A., Maki, T., Kidoaki, S., Suzuki, H., Taiji, M., Itoh, M., Hayashizaki, Y., Matsuda, T., Biomaterials 31 (1), 58 (2010).CrossRefGoogle Scholar
Tang, S., Wang, M., Olsen, B.D., J. Am. Chem. Soc. 137 (11), 3946 (2015).CrossRefGoogle Scholar
Edwards, C.E.R., Mai, D.J., Tang, S., Olsen, B.D., Phys. Rev. Mater. 4 (1), 015602 (2020).CrossRefGoogle Scholar
Tang, S., Glassman, M.J., Li, S., Socrate, S., Olsen, B.D., Macromolecules 47 (2), 791 (2014).CrossRefGoogle Scholar
Wong Po Foo, C.T.S., Lee, J.S., Mulyasasmita, W., Parisi-Amon, A., Heilshorn, S.C., Proc. Natl. Acad. Sci. U.S.A. 106 (52), 22067 (2009).CrossRefGoogle Scholar
Mulyasasmita, W., Lee, J.S., Heilshorn, S.C., Biomacromolecules 12 (10), 3406 (2011).CrossRefGoogle Scholar
Mulyasasmita, W., Cai, L., Dewi, R.E., Jha, A., Ullmann, S.D., Luong, R.H., Huang, N.F., Heilshorn, S.C., J. Control. Release 191, 71 (2014).CrossRefGoogle Scholar
Grove, T.Z., Osuji, C.O., Forster, J.D., Dufresne, E.R., Regan, L., J. Am. Chem. Soc. 132 (40), 14024 (2010).CrossRefGoogle Scholar
Grove, T.Z., Forster, J., Pimienta, G., Dufresne, E., Regan, L., Biopolymers 97 (7), 508 (2012).CrossRefGoogle Scholar
Müller, C., Müller, A., Pompe, T., Soft Matter 9 (27), 6207 (2013).CrossRefGoogle Scholar