Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T22:15:06.510Z Has data issue: false hasContentIssue false

Scanning Probe Microscopy Measurements of Friction

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

This article describes the details of scanning probe microscopy measurements of interfacial friction from an experimental perspective. In such studies, the probe tip is taken as a model of a single asperity within a tribological contact, and interfacial forces are measured as a function of the sliding contact of the probe tip with the surface. With appropriate detection schemes, friction and load forces can be monitored simultaneously and used together to describe the frictional properties of the microscopic contact. This article provides a detailed description of the procedures and protocols of friction measurements performed with scanning probe microscopy, the relevant properties of probe tips, and the influence of environment on microscopic friction measurements. In addition, the article provides a brief overview of several categories of friction studies performed with scanning probe microscopy, highlighting the type of materials characterized in these studies as well as the importance and impact of the microscopic measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Mate, C.M., McClelland, G.M., Erlandsson, R., and Chiang, S., Phys. Rev. Lett. 59 (1987) p.1942.CrossRefGoogle Scholar
2Salmeron, M.B., MRS Bull. 18 (5) (1993) p.20.CrossRefGoogle Scholar
3Overney, R. and Meyer, E., MRS Bull. 18 (5) (1993) p.26.CrossRefGoogle Scholar
4Gnecco, E., Bennewitz, R., and Meyer, E., Chimia 56 (2003) p.562.CrossRefGoogle Scholar
5Falvo, M.R. and Superfine, R., J.Nanopart. Res. 2 (2000) p.237.CrossRefGoogle Scholar
6Singer, I., J.Vac. Sci. Technol., A 12 (1994) p.2605.CrossRefGoogle Scholar
7Carpick, R.W. and Salmeron, M., Chem. Rev. 97 (1997) p.1163.CrossRefGoogle Scholar
8, Myhra, Springer Ser. Surf. Sci. 23 (2003) p. 247.Google Scholar
9Mate, C.M., MRS Bull. 27 (2002) p.967.CrossRefGoogle Scholar
10Hazel, J.L. and Tsukruk, V.V., Thin Solid Films 339 (1999) p.249.CrossRefGoogle Scholar
11Hazel, J.L. and Tsukruk, V.V., J. Tribol. 120 (1998) p.814.CrossRefGoogle Scholar
12Liu, Y., Langmuir 10 (1994) p.2241.CrossRefGoogle Scholar
13Liu, Y., Langmuir 12 (1996) p.1235.CrossRefGoogle Scholar
14Liu, Y., Wear 192 (1996) p.141.CrossRefGoogle Scholar
15Pietrement, O., Tribol. Lett. 7 (2000) p.13.Google Scholar
16Cain, R., Biggs, S., and Page, N.W., J. Colloid Interface Sci. 227 (2000) p.55.CrossRefGoogle Scholar
17Ogletree, D.F., Carpick, R.W., and Salmeron, M., Rev. Sci. Instrum. 67 (1996) p.3298.CrossRefGoogle Scholar
18Cain, R.G., Reitsma, M.G., Biggs, S., and Page, N.W., Rev. Sci. Instrum. 72 (2001) p.3304.CrossRefGoogle Scholar
19Buenviaje, C.K., Ge, S.-R., Rafailovich, M., and Overney, R.M. in Fundamentals of Nanoin-dentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, War-rendale, PA, 1998) p.187.Google Scholar
20Feiler, A., Attard, P., and Larson, I., Rev. Sci. Instrum. 71 (2000) p.2746.CrossRefGoogle Scholar
21Bogdanovic, G., Meurk, A., and Rutland, M.W., Colloids Surf., B 19 (2000) p.397.CrossRefGoogle Scholar
22Lim, M.S., “Fundamental Studies of Chemical Mechanical Planarization (CMP) Processes of Tungsten and Copper,” PhD dissertation, University of Houston, 2002.Google Scholar
23Lee, S., “Atomic Scale Investigation of Inter-facial Friction: The Role of Chemical Composition and Structure,” PhD dissertation, University of Houston, 2000.Google Scholar
24Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., and Landman, U., J.Phys. Chem. B 108 (2004) p.3410.CrossRefGoogle Scholar
25Sheiko, S.S., Moeller, M., Reuvekamp, E.M.C.M., and Zandbergen, H.W., Phys. Rev. B 48 (1993) p.5675.CrossRefGoogle Scholar
26Tanasa, G., Kurnosikov, O., Flipse, C.F.J., Buijnsters, J.G., and Enckevort, W.J.P. van, J. Appl. Phys. 94 (2003) p.1699.CrossRefGoogle Scholar
27Thomson, R.E. and Moreland, J., J. Vac. Sci. Technol., B 13 (1995) p.1123.CrossRefGoogle Scholar
28Poggi, M.A., Bottomley, L.A., and Lillehei, P.T., Nano Lett. 4 (2004) p.61.CrossRefGoogle Scholar
29Salvadori, M.C., Fritz, M.C., Carraro, C., Maboudian, R., Monteiro, O.R., and Brown, I.G., Diamond Relat. Mater. 10 (2001) p.2190.CrossRefGoogle Scholar
30Wiederhold, K.P., Yamaguchi, Y., Ayala, A., Matheaus, M., Gutierrez, C.J., and Galloway, H.C., J.Vac. Sci. Technol., B 18 (2000) p.1182.CrossRefGoogle Scholar
31Spencer, N.D., Perry, S.S., Lee, S., Mueller, M., Pasche, S., Paul, S.M. De, Textor, M., Yan, X., and Lim, M.S., in Proc. 29th Leeds-Lyon Symp. on Tribol-ogy, Tribology Ser. 41 (Elsevier, Oxford, 2003) p.411.Google Scholar
32Yan, X., Perry, S.S., Spencer, N.D., Pasche, S., Paul, S.M. De, Textor, M., and Lim, M.S., Langmuir 20 (2004) p.423.CrossRefGoogle Scholar
33Hu, J., Xiao, X.-d., Ogletree, D.F., and Salmeron, M., Surf. Sci. 327 (1995) p.358.CrossRefGoogle Scholar
34Xu, L. and Salmeron, M., Langmuir 14 (1998) p.2187.CrossRefGoogle Scholar
35Xu, L., Lio, A., Hu, J., Ogletree, D.F., and Salmeron, M., J.Phys. Chem. B 102 (1998) p.540.CrossRefGoogle Scholar
36Schumacher, A., Kruse, N., Prins, R., Meyer, E., Luthi, R., Howald, L., Grunthrodt, H.-J., and Scandella, L., J.Vac. Sci. Technol., B 14 (1996) p.1264.CrossRefGoogle Scholar
37Meurk, A., Yanez, J., and Bergstrom, L., Pow-derTechnol. 119 (2001) p.241.CrossRefGoogle Scholar
38Binggeli, M. and Mate, C.M., Appl. Phys. Lett. 65 (1994) p.415.CrossRefGoogle Scholar
39Binggeli, M. and Mate, C.M., J.Vac. Sci. Tech-nol., B 13 (1995) p.1312.CrossRefGoogle Scholar
40Fujihara, M., Aoki, D., Okabe, Y., Takano, H., Hokari, H., Frommer, J., Nagtani, Y., and Sakai, F., Chem. Lett. 7 (1996) p.499.CrossRefGoogle Scholar
41Xu, L., Bluhm, H., and Salmeron, M., Surf. Sci. 407 (1998) p.251.CrossRefGoogle Scholar
42Sugawara, Y., Ohta, M., Konishi, T., Morita, S., Suzuki, M., and Enomoto, Y., Wear 168 (1993) p.13.CrossRefGoogle Scholar
43Tian, F., Xiao, X., Loy, M.M.T., Wang, C., and Bai, C., Langmuir 15 (1999) p.244.CrossRefGoogle Scholar
44Koinkar, V.N. and Bhushan, B., J. Vac. Sci. Technol., B 14 (1996) p.2378.CrossRefGoogle Scholar
45Kim, B.I., Lee, S., Guenard, R., Torres, L.C. Fernandez, Perry, S.S., Frantz, P., and Didziulis, S.V., Surf. Sci. 481 (2001) p.185.CrossRefGoogle Scholar
46Leggett, G.J., Anal. Chim. Acta 479 (2003) p.17.CrossRefGoogle Scholar
47Carpick, R.W., Sasaki, D.Y., and Burns, A.R., Tribol. Lett. 7 (2000) p.79.CrossRefGoogle Scholar
48Ho, S.P., Carpick, R.W., Boland, T., and LaBerge, M., Wear 253 (2000) p.1145.CrossRefGoogle Scholar
49Kim, S.H., Marmo, C., and Somorjai, G.A., Biomaterials 22 (2001) p.3285.CrossRefGoogle Scholar
50Overney, R.M., Trends Polym. Sci. 3 (1995) p.359.Google Scholar
51Krotil, H.-U. and Marti, O., J. Synth. Lubr. 18 (2001) p.3.CrossRefGoogle Scholar
52Sills, S. and Overney, R.M., Phys. Rev. Lett. 91 095501 (2003).CrossRefGoogle Scholar
53Dinelli, F., Buenviaje, C., and Overney, R.M., J.Chem. Phys. 113 (2000) p.2043.CrossRefGoogle Scholar
54Hammerschmidt, J.A., Moasser, B., Gladfelter, W.L., Haugstad, G., and Jones, R.R., Macromolecules 29 (1996) p.8996.CrossRefGoogle Scholar
55Lee, S., El-bjeirami, O., Perry, S.S., Didziulis, S.V., Frantz, P., and Radhakrishnan, G., J. Vac. Sci. Techol., B 18 (2000) p.69.CrossRefGoogle Scholar
56Riedo, E. and Brune, H., Appl. Phys. Lett. 83 (2003) p.1986.CrossRefGoogle Scholar
57Enachescu, M., Oetelaar, R.J.A. van den, Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., and Salmeron, M., Phys. Rev. Lett. 81 (1998) p. 1877.CrossRefGoogle Scholar
58Liu, D., Benstetter, G., Lodermeier, E., Akula, I., Dudarchyk, I., Liu, Y., and Ma, T., Surf. Coat. Technol. 172 (2003) p.194.CrossRefGoogle Scholar
59Santos, L.V., Trava-Airoldi, V.J., Corat, E.J., Iha, K., Massi, M., Marcos, P., Prioli, R., and Landers, R., Diamond Relat. Mater. 11 (2002) p.1135.CrossRefGoogle Scholar
60Santos, L.V., Trava-Airoldi, V.J., Iha, K., Corat, E.J., and Salvadori, M.C., Diamond Relat. Mater. 10 (2001) p.1049.CrossRefGoogle Scholar
61Mate, C.M., Wear 168 (1993) p.17.CrossRefGoogle Scholar
62Mate, C.M., Surf. Coat. Technol. 62 (1993) p.373.CrossRefGoogle Scholar
63Haugstad, G., Gladfelter, W.L., Weberg, E.B., Weberg, R.T., and Jones, R.R., Tribol. Lett. 1 (1995) p.253.CrossRefGoogle Scholar
64Prioli, R., Rivas, A.M.F., Freire, F.L. Jr, and Caride, A.O., Appl. Phys. A 76 (2003) p.565.CrossRefGoogle Scholar
65Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., and Brune, H., Phys. Rev. Lett. 91 084502 (2003).CrossRefGoogle Scholar
66Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, Ch., Bammerlin, M., Meyer, E., and Guntherodt, H.-J., Phys. Rev. Lett. 84 (2000) p.1172.CrossRefGoogle Scholar
67Dinelli, F., Buenviaje, C., and Overney, R.M., J.Chem. Phys. 113 (2000) p.2043.CrossRefGoogle Scholar
68Schmidt, R.H., Haugstad, G., and Gladfelter, W.L., Langmuir 19 (2003) p.10390.CrossRefGoogle Scholar
69Fujita, M. and Fujihira, M., Ultramicroscopy 91 (2002) p.227.CrossRefGoogle Scholar
70Yang, X. and Perry, S.S., Langmuir 19 (2003) p.6135.CrossRefGoogle Scholar
71Hammerschmidt, J.A., Gladfelter, W.L., and Haugstad, G., Macromolecules 32 (1999) p. 3360.CrossRefGoogle Scholar