Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T23:22:00.002Z Has data issue: false hasContentIssue false

Superomniphobic surfaces: Design and durability

Published online by Cambridge University Press:  15 May 2013

Arun K. Kota
Affiliation:
Department of Materials Science and Engineering, University of Michigan; arunkota@umich.edu
Wonjae Choi
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas; wonjae.choi@utdallas.edu
Anish Tuteja
Affiliation:
Department of Materials Science and Engineering, University of Michigan; atuteja@umich.edu
Get access

Abstract

Surfaces that display liquid contact angles greater than 150° along with low contact angle hysteresis for liquids with both high and low surface tension values are known as superomniphobic surfaces. Such surfaces are of interest for a diverse array of applications, including self-cleaning surfaces, nonfouling surfaces, stain-free clothing, spill-resistant protective wear, drag reduction, and fingerprint-resistant surfaces. Recently, significant advances have been made in understanding the criteria required to design superomniphobic surfaces. In this article, we discuss the roles of surface energy, roughness, re-entrant texture, and hierarchical structure in fabricating superomniphobic surfaces. We also provide a review of different superomniphobic surfaces reported recently in the literature and emphasize the need for mechanical, chemical, and radiation durability of superomniphobic surfaces for practical applications. Finally, we conclude with a discussion of the unresolved challenges in developing durable superomniphobic surfaces that define the scope for further improvements in the field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sun, T.L., Feng, L., Gao, X.F., Jiang, L., Acc. Chem. Res. 38, 644 (2005).CrossRefGoogle Scholar
Genzer, J., Efimenko, K., Biofouling 22, 339 (2006).CrossRefGoogle Scholar
Leng, B.X., Shao, Z.Z., de With, G., Ming, W.H., Langmuir 25, 2456 (2009).CrossRefGoogle Scholar
Lee, C., Kim, C.-J., Phys. Rev. Lett. 106 (2011).Google Scholar
Zhang, X., Zhao, J., Zhu, Q., Chen, N., Zhang, M., Pan, Q., ACS Appl. Mater. Interfaces 3, 2630 (2011).CrossRefGoogle Scholar
Jin, H., Kettunen, M., Laiho, A., Pynnonen, H., Paltakari, J., Marmur, A., Ikkala, O., Ras, R.H.A., Langmuir 27, 1930 (2011).CrossRefGoogle Scholar
Nosonovsky, M., Bhushan, B., Curr. Opin. Colloid Interface Sci. 14, 270 (2009).CrossRefGoogle Scholar
Huang, X., Wen, X., Cheng, J., Yang, Z., Appl. Surf. Sci. 258, 8739 (2012).CrossRefGoogle Scholar
Dufour, R., Harnois, M., Coffinier, Y., Thomy, V., Boukherroub, R., Senez, V., Langmuir 26, 17242 (2010).CrossRefGoogle Scholar
Guo, Z.-G., Liu, W.-M., Appl. Phys. Lett. 90 (2007).Google Scholar
Jin, M.H., Feng, X.J., Feng, L., Sun, T.L., Zhai, J., Li, T.J., Jiang, L., Adv. Mater. 17, 1977 (2005).CrossRefGoogle Scholar
Xi, J., Jiang, L., Ind. Eng. Chem. Res. 47, 6354 (2008).CrossRefGoogle Scholar
Balu, B., Breedveld, V., Hess, D.W., Langmuir 24, 4785 (2008).CrossRefGoogle Scholar
Lai, Y., Lin, C., Huang, J., Zhuang, H., Sun, L., Nguyen, T., Langmuir 24, 3867 (2008).CrossRefGoogle Scholar
Kim, P., Wong, T.-S., Alvarenga, J., Kreder, M.J., Adorno-Martinez, W.E., Aizenberg, J., ACS Nano 6, 6569 (2012).CrossRefGoogle Scholar
Lafuma, A., Quéré, D., Europhys. Lett. 96 (2011).CrossRefGoogle Scholar
Wong, T.-S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J., Nature 477, 443 (2011).CrossRefGoogle Scholar
Richard, D., Quéré, D., Europhys. Lett. 50, 769 (2000).CrossRefGoogle Scholar
Tuteja, A., Choi, W., Mabry, J.M., McKinley, G.H., Cohen, R.E., Proc. Natl. Acad. Sci. U.S.A. 105, 18200 (2008).CrossRefGoogle Scholar
Tuteja, A., Choi, W., Ma, M., Mabry, J.M., Mazzella, S.A., Rutledge, G.C., McKinley, G.H., Cohen, R.E., Science 318, 1618 (2007).CrossRefGoogle Scholar
Tuteja, A., Choi, W., McKinley, G.H., Cohen, R.E., Rubner, M.F., MRS Bull. 33, 752 (2008).CrossRefGoogle Scholar
Chhatre, S.S., Choi, W., Tuteja, A., Park, K.C., Mabry, J.M., McKinley, G.H., Cohen, R.E., Langmuir 26, 4027 (2010).CrossRefGoogle Scholar
Kota, A.K., Kwon, G., Choi, W., Mabry, J.M., Tuteja, A., Nat. Commun. 3, 1025 (2012).CrossRefGoogle Scholar
Yang, J., Zhang, Z., Xu, X., Zhu, X., Men, X., Zhou, X., J. Mater. Chem. 22, 2834 (2012).CrossRefGoogle Scholar
Kobaku, S.P.R., Kota, A.K., Lee, D.H., Mabry, J.M., Tuteja, A., Angew. Chem. Int. Ed. 51, 10109 (2012).CrossRefGoogle Scholar
Tsujii, K., Yamamoto, T., Onda, T., Shibuichi, S., Angew. Chem. Int. Ed. 36, 1011 (1997).CrossRefGoogle Scholar
Young, T., Philos. Trans. R. Soc. London 95, 65 (1805).Google Scholar
Johnson, R.E., Dettre, R.H., in Contact Angle, Wettability and Adhesion, ACSAdvances in Chemistry Series (American Chemical Society, Washington, DC, 1964), vol. 43.Google Scholar
Shuttleworth, R., Bailey, G.L.J., Discuss. Faraday Soc. 3, 16 (1948).CrossRefGoogle Scholar
Marmur, A., Langmuir 19, 8343 (2003).CrossRefGoogle Scholar
Nosonovsky, M., Langmuir 23, 3157 (2007).CrossRefGoogle Scholar
Patankar, N.A., Langmuir 19, 1249 (2003).CrossRefGoogle Scholar
Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
Cassie, A.B.D., Baxter, S., Trans. Faraday Soc. 40, 0546 (1944).CrossRefGoogle Scholar
Chen, W., Fadeev, A.Y., Hsieh, M.C., Oner, D., Youngblood, J., McCarthy, T.J., Langmuir 15, 3395 (1999).CrossRefGoogle Scholar
Choi, W., Tuteja, A., Mabry, J.M., Cohen, R.E., McKinley, G.H., J. Colloid Interface Sci. 339, 208 (2009).CrossRefGoogle Scholar
Marmur, A., Langmuir 24, 7573 (2008).CrossRefGoogle Scholar
Lafuma, A., Quéré, D., Nat. Mater. 2, 457 (2003).CrossRefGoogle Scholar
Callies, M., Quéré, D., Soft Matter 1, 55 (2005).CrossRefGoogle Scholar
Herminghaus, S., Europhys. Lett. 79 (2007).CrossRefGoogle Scholar
Choi, W., Tuteja, A., Chhatre, S., Mabry, J.M., Cohen, R.E., McKinley, G.H., Adv. Mater. 21, 2190 (2009).CrossRefGoogle Scholar
Bhushan, B., Jung, Y.C., in Nanotribology and Nanomechanics: Nanotribology, Biomimetics and Industrial Applications (Springer-Verlag, Berlin, 2011), vol. 2.Google Scholar
Gao, L.C., McCarthy, T.J., Langmuir 22, 2966 (2006).CrossRefGoogle Scholar
Su, Y., Ji, B., Huang, Y., Hwang, K.-C., Langmuir 26, 18926 (2010).CrossRefGoogle Scholar
Kota, A.K., Li, Y., Mabry, J.M., Tuteja, A., Adv. Mater. 24, 5838 (2012).CrossRefGoogle Scholar
Pan, S., Kota, A.K., Mabry, J.M., Tuteja, A., J. Am. Chem. Soc. 135 (2), 578 (2012).CrossRefGoogle Scholar
Johnson, R.E., Dettre, R.H., J. Phys. Chem. 68, 1744 (1964).CrossRefGoogle Scholar
Su, Y., Ji, B., Zhang, K., Gao, H., Huang, Y., Hwang, K., Langmuir 26, 4984 (2010).CrossRefGoogle Scholar
Bittoun, E., Marmur, A., Langmuir 28 (39), 13933 (2012).CrossRefGoogle Scholar
Cao, L., Price, T.P., Weiss, M., Gao, D., Langmuir 24, 1640 (2008).CrossRefGoogle Scholar
Hsieh, C.T., Wu, F.L., Chen, W.Y., J. Phys. Chem. C 113, 13683 (2009).CrossRefGoogle Scholar
Wang, D., Wang, X., Liu, X., Zhou, F., J. Phys. Chem. C 114, 9938 (2010).CrossRefGoogle Scholar
Fujii, T., Aoki, Y., Habazaki, H., Langmuir 27, 11752 (2011).CrossRefGoogle Scholar
Darmanin, T., Guittard, F., Amigoni, S., de Givenchy, E.T., Noblin, X., Kofman, R., Celestini, F., Soft Matter 7, 1053 (2011).CrossRefGoogle Scholar
Yang, J., Zhang, Z., Xu, X., Men, X., Zhu, X., Zhou, X., New J. Chem. 35, 2422 (2011).CrossRefGoogle Scholar
Youngblood, J.P., Sottos, N.R., Extrand, C., MRS Bull. 33, 732 (2008).CrossRefGoogle Scholar
Zhang, J.P., Seeger, S., Angew. Chem. Int. Ed. 50, 6652 (2011).CrossRefGoogle Scholar
Wang, H., Xue, Y., Ding, J., Feng, L., Wang, X., Lin, T., Angew. Chem. Int. Ed. 50, 11433 (2011).CrossRefGoogle Scholar
Bartolo, D., Boudaoud, A., Narcy, G., Bonn, D., Phys. Rev. Lett. 99 (2007).CrossRefGoogle Scholar
Bertola, V., Int. J. Heat Mass Transf. 52, 1786 (2009).CrossRefGoogle Scholar
Deng, X., Mammen, L., Butt, H.-J.R., Vollmer, D., Science 335, 67 (2012).CrossRefGoogle Scholar
Wang, X., Liu, X., Zhou, F., Liu, W., Chem. Commun. 47, 2324 (2011).CrossRefGoogle Scholar