Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T16:22:09.523Z Has data issue: false hasContentIssue false

Testing the Fundamental Theories of Surface Dynamics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the MRS Medal talk by Norm Bartelt (Sandia National Laboratories, California), presented at the 2001 Materials Research Society Fall Meeting on November 29 in Boston. Bartelt received the Medal for his “contributions to the statistical mechanics of materials surfaces.” A long-standing goal of materials science research has been to predict the long-term evolution of the microstructure of materials from a knowledge of atomic processes. This is usually extremely difficult to do in any detail because of the large number of atomic processes to consider, many of which are poorly understood. On solid surfaces, however, progress in the prediction of microstructural evolution can now be made because of advances in real-time microscopy that allow the characterization of the time evolution of microstructure in unprecedented detail. These observations directly reveal the complex relationships between collective thermal fluctuations on atomic scales and deterministic behavior on macroscopic scales. In this presentation, attempts to construct models of these observations are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pimpinelli, A. and Villain, J., Physics of Crystal Growth (Cambridge University Press, Cambridge, U.K., 1998).CrossRefGoogle Scholar
2.Venables, J., Introduction to Surface and Thin-Film Processes (Cambridge University Press, Cambridge, U.K., 2000).CrossRefGoogle Scholar
3.Schmid, A.K., Hwang, R.Q., and Bartelt, N.C., Phys. Rev. Lett. 80 (1998) p. 2153.Google Scholar
4.Mullins, W.W., J. Appl. Phys. 27 (1956) p. 900.Google Scholar
5.Bartelt, N.C., Theis, W., and Tromp, R.M., Phys. Rev. B 54 (1996) p. 11741.CrossRefGoogle Scholar
6.Hannon, J.B., Klünker, C., Giesen, M., Ibach, H., Bartelt, N.C., and Hamilton, J.C., Phys. Rev. Lett. 79 (1997) p. 2506.CrossRefGoogle Scholar
7.Icking-Konert, G.S., Giesen, M., and Ibach, H., Surf. Sci. 398 (1998) p. 37.CrossRefGoogle Scholar
8.Morgenstern, K., Rosenfeld, G., Laegsgaard, E., Besenbacher, F., and Comsa, G., Phys. Rev. Lett. 80 (1998) p. 556.CrossRefGoogle Scholar
9.Hibino, H., Hu, C.-W., Ogino, T., and Tsong, I.S.T., Phys. Rev. B 63, 245402 (2001).Google Scholar
10.Tanaka, S., Bartelt, N.C., Umbach, C.C., Tromp, R.M., and Blakely, J.M., Phys. Rev. Lett. 78 (1997) p. 3342.Google Scholar
11.Bartelt, M.C., Schmid, A.K., Evans, J.W., and Hwang, R.Q., Phys. Rev. Lett. 81 (1998) p. 1901.CrossRefGoogle Scholar
12.Hannon, J.B., Bartelt, M.C., Bartelt, N.C., and Kellogg, G.L., Phys. Rev. Lett. 81 (1998) p. 4676.CrossRefGoogle Scholar
13.Tromp, R.M. and Hannon, J.B., Surf. Rev. Lett. 9 (2002) p. 1565.CrossRefGoogle Scholar
14.Feibelman, P.J., Phys. Rev. Lett. 81 (1998) p. 168.CrossRefGoogle Scholar
15.Stampfl, C., Kreuzer, J.J., Payne, S.H., Pfnür, H., and Scheffler, M., Phys. Rev. Lett. 83 (1999) p. 2993.CrossRefGoogle Scholar
16.Mullins, W.W., J. Appl. Phys. 30 (1959) p. 77.CrossRefGoogle Scholar
17.McCarty, K.F., Nobel, J.A., and Bartelt, N.C., Nature 412 (2001) p. 622.Google Scholar
18.Bauer, E., Rep. Prog. Phys. 57 (1994) p. 895.CrossRefGoogle Scholar
19.Schmid, A.K., Bartelt, N.C., and Hwang, R.Q., Science 290 (2000) p. 1561.CrossRefGoogle Scholar