Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T10:57:22.718Z Has data issue: false hasContentIssue false

Two-dimensional materials under electron irradiation

Published online by Cambridge University Press:  13 January 2015

Litao Sun
Affiliation:
SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, China; slt@seu.edu.cn
Florian Banhart
Affiliation:
IPCMS, UMR 7504 CNRS, University of Strasbourg, France; florian.banhart@ipcms.unistra.fr
Jamie Warner
Affiliation:
Department of Materials, University of Oxford, United Kingdom; jamie.warner@materials.ox.ac.uk
Get access

Abstract

This article reviews atomic-resolution in situ electron microscopy studies of two-dimensional materials such as graphene, hexagonal boron nitride, and metal dichalcogenides with a focus on defect structures. Electron irradiation allows defect formation and atomic-resolution imaging at the same time by the same electron beam. Two-dimensional hexagonal lattices show unique mechanisms of defect reconstruction that do not appear in other materials. The combination of thermal annealing and irradiation, both adjustable in the electron microscope, sets a balance between equilibrium and nonequilibrium and allows for the generation of new structures and morphologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K., Nature 490, 192 (2012).CrossRefGoogle Scholar
Geim, A.K., Science 324, 1530 (2009).CrossRefGoogle Scholar
Han, W.-Q., Wu, L., Zhu, Y., Watanabe, K., Taniguchi, T., Appl. Phys. Lett. 93, (2008).Google Scholar
Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., Hone, J., Science 328, 76 (2010).CrossRefGoogle Scholar
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., Zhang, H., Angew. Chem. Int. Ed. 50, 11093 (2011).CrossRefGoogle Scholar
Banhart, F., Kotakoski, J., Krasheninnikov, A.V., ACS Nano 5, 26 (2010).CrossRefGoogle Scholar
Krasheninnikov, A.V., Nordlund, K., J. Appl. Phys. 107, 071301 (2010).CrossRefGoogle Scholar
Robertson, A.W., Warner, J.H., Nanoscale 5, 4079 (2013).Google Scholar
Robertson, A.W., Allen, C.S., Wu, Y.A., He, K., Olivier, J., Neethling, J., Kirkland, A.I., Warner, J.H., Nat. Commun. 3, 1144 (2012).CrossRefGoogle Scholar
Rodriguez-Manzo, J.A., Banhart, F., Nano Lett. 9, 2285 (2009).CrossRefGoogle Scholar
Rodríguez-Manzo, J.A., Cretu, O., Banhart, F., ACS Nano 4, 3422 (2010).CrossRefGoogle Scholar
Jin, C., Lin, F., Suenaga, K., Iijima, S., Phys. Rev. Lett. 102, 195505 (2009).CrossRefGoogle Scholar
Komsa, H.-P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. Lett. 109, 035503 (2012).Google Scholar
Komsa, H.-P., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B: Condens. Matter 88, 035301 (2013).CrossRefGoogle Scholar
Liu, X., Xu, T., Wu, X., Zhang, Z., Yu, J., Qiu, H., Hong, J.-H., Jin, C.-H., Li, J.-X., Wang, X.-R., Sun, L.-T., Guo, W., Nat. Commun. 4, 1776 (2013).Google Scholar
Meyer, J.C., Chuvilin, A., Algara-Siller, G., Biskupek, J., Kaiser, U., Nano Lett. 9, 2683 (2009).CrossRefGoogle Scholar
Qiu, H., Xu, T., Wang, Z., Ren, W., Nan, H., Ni, Z., Chen, Q., Yuan, S., Miao, F., Song, F., Long, G., Shi, Y., Sun, L., Wang, J., Wang, X., Nat. Commun. 4, 2642 (2013).CrossRefGoogle Scholar
Meyer, J.C., Eder, F., Kurasch, S., Skakalova, V., Kotakoski, J., Park, H.J., Roth, S., Chuvilin, A., Eyhusen, S., Benner, G., Krasheninnikov, A.V., Kaiser, U., Phys. Rev. Lett. 108, 196102 (2012).CrossRefGoogle Scholar
Chuvilin, A., Meyer, J.C., Algara-Siller, G., Kaiser, U., New J. Phys. 11, 083019 (2009).CrossRefGoogle Scholar
Jin, C., Lan, H., Peng, L., Suenaga, K., Iijima, S., Phys. Rev. Lett. 102, 205501 (2009).CrossRefGoogle Scholar
He, L., Xu, T., Sun, J., Yin, K., Xie, X., Ding, L., Xiu, H., Sun, L., Carbon 50, 2845 (2012).CrossRefGoogle Scholar
Neng, W., Jun, X., Tao, X., Martini, M., Li-tao, S., Jun, S., Yi-long, Z., RSC Adv. 3, 17860 (2013).CrossRefGoogle Scholar
Xu, T., Xie, X., Sun, L., 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE Press: Piscataway, NJ, 2013), p. 637.Google Scholar
Xu, T., Xie, X., Yin, K., Sun, J., He, L., Sun, L., Small 10, 1724 (2014).Google Scholar
Xu, T., Yin, K., Xie, X., He, L., Wang, B., Sun, L., Small 8, 3422 (2012).CrossRefGoogle Scholar
Lin, J., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K.I., Cuong, N.T., Otani, M., Okada, S., Lupini, A.R., Idrobo, J.-C., Caudel, D., Burger, A., Ghimire, N.J., Yan, J., Mandrus, D.G., Pennycook, S.J., Pantelides, S.T., Nat. Nanotechnol. 9, 436 (2014).CrossRefGoogle Scholar
Neng, W., Sun, L.-T., Hu, X.-H., Zhu, Y.-Y., Lin, Z., Tao, X., Bi, H.-C., Jun, S., Dong, F.-Z., Cryst. Growth Des. 12, 3899 (2012).CrossRefGoogle Scholar
Banhart, F., Rep. Prog. Phys. 62, 1181 (1999).CrossRefGoogle Scholar
Chen, J., Shi, T., Cai, T., Xu, T., Sun, L., Wu, X., Yu, D., Appl. Phys. Lett. 102, 103107 (2013).Google Scholar
Li, L., Reich, S., Robertson, J., Phys. Rev. B 72, 184109 (2005).Google Scholar
Krasheninnikov, A.V., Banhart, F., Nat. Mater. 6, 723 (2007).CrossRefGoogle Scholar
Russo, C.J., Golovchenko, J.A., Proc. Natl. Acad. Sci. U.S.A. 109, 5953 (2012).Google Scholar
Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A., Nano Lett. 8, 3582 (2008).CrossRefGoogle Scholar
Robertson, A.W., Montanari, B., He, K., Allen, C.S., Wu, Y.A., Harrison, N.M., Kirkland, A.I., Warner, J.H., ACS Nano 7, 4495 (2013).CrossRefGoogle Scholar
Lee, J., Zhou, W., Pennycook, S.J., Idrobo, J.-C., Pantelides, S.T., Nat. Commun. 4, 1650 (2013).CrossRefGoogle Scholar
Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., Idrobo, J.-C., Phys. Rev. Lett. 109, 206803 (2012).CrossRefGoogle Scholar
Robertson, A.W., Montanari, B., He, K., Kim, J., Allen, C.S., Wu, Y.A., Olivier, J., Neethling, J., Harrison, N., Kirkland, A.I., Warner, J.H., Nano Lett. 13, 1468 (2013).Google Scholar
Krasheninnikov, A., Lehtinen, P., Foster, A., Nieminen, R., Chem. Phys. Lett. 418, 132 (2006).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A., Nordlund, K., Phys. Rev. B: Condens. Matter 74, 245420 (2006).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A., Kaiser, U., Meyer, J., Phys. Rev. Lett. 106, 105505 (2011).CrossRefGoogle Scholar
Eder, F.R., Kotakoski, J., Kaiser, U., Meyer, J.C., Sci. Rep. 4, 4060 (2014).Google Scholar
Warner, J.H., Margine, E.R., Mukai, M., Robertson, A.W., Giustino, F., Kirkland, A.I., Science 337, 209 (2012).CrossRefGoogle Scholar
Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., Nature 430, 870 (2004).CrossRefGoogle Scholar
Lehtinen, O., Kurasch, S., Krasheninnikov, A.V., Kaiser, U., Nat. Commun. 4, 2098 (2013).CrossRefGoogle Scholar
Yazyev, O.V., Louie, S.G., Phys. Rev. B: Condens. Matter 81, 195420 (2010).Google Scholar
Jeong, B.W., Ihm, J., Lee, G.-D., Phys. Rev. B: Condens. Matter 78, 165403 (2008).CrossRefGoogle Scholar
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A., Science 323, 1705 (2009).CrossRefGoogle Scholar
Song, B., Schneider, G.F., Xu, Q., Pandraud, G., Dekker, C., Zandbergen, H., Nano Lett. 11, 2247 (2011).CrossRefGoogle Scholar
Warner, J.H., Rummeli, M.H., Ge, L., Gemming, T., Montanari, B., Harrison, N.M., Buchner, B., Briggs, G.A.D., Nat. Nanotechnol. 4, 500 (2009).CrossRefGoogle Scholar
Kim, K., Coh, S., Kisielowski, C., Crommie, M.F., Louie, S.G., Cohen, M.L., Zettl, A., Nat. Commun. 4, 2723 (2013).CrossRefGoogle Scholar
Zan, R., Ramasse, Q.M., Bangert, U., Novoselov, K.S., Nano Lett. 12, 3936 (2012).CrossRefGoogle Scholar
He, K., Lee, G.-D., Robertson, A.W., Yoon, E., Warner, J.H., Nat. Commun. 5, 3040 (2014).CrossRefGoogle Scholar
Koskinen, P., Malola, S., Häkkinen, H., Phys. Rev. B: Condens. Matter 80, 073401 (2009).CrossRefGoogle Scholar
Liu, Z., Suenaga, K., Harris, P.J.F., Iijima, S., Phys. Rev. Lett. 102, 015501 (2009).CrossRefGoogle Scholar
Cretu, O., Botello-Mendez, A.R., Janowska, I., Pham-Huu, C., Charlier, J.-C., Banhart, F., Nano Lett. 13, 3487 (2013).CrossRefGoogle Scholar
Krasheninnikov, A.V., Nordlund, K., Keinonen, J., Phys. Rev. B: Condens. Matter 65, 165423 (2002).Google Scholar
Warner, J.H., Fan, Y., Robertson, A.W., He, K., Yoon, E., Lee, G.D., Nano Lett. 13, 4937 (2013).CrossRefGoogle Scholar
Robertson, A.W., He, K., Kirkland, A.I., Warner, J.H., Nano Lett. 14, 908 (2014).CrossRefGoogle Scholar
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N.A., Khlobystov, A.N., Nat. Chem. 2, 450 (2010).CrossRefGoogle Scholar
Kotakoski, J., Mangler, C., Meyer, J.C., Nat. Commun. 5, 3991 (2014).Google Scholar
Robertson, A.W., Lee, G.-D., He, K., Yoon, E., Kirkland, A.I., Warner, J.H., Nano Lett. 14, 1634 (2014).CrossRefGoogle Scholar
Kurasch, S., Kotakoski, J., Lehtinen, O., Skákalová, V., Smet, J., Krill, C.E., Krasheninnikov, A.V., Kaiser, U., Nano Lett. 12, 3168 (2012).CrossRefGoogle Scholar
Wang, H., Wang, Q., Cheng, Y., Li, K., Yao, Y., Zhang, Q., Dong, C., Wang, P., Schwingenschlögl, U., Yang, W., Zhang, X.X., Nano Lett. 12, 141 (2012).CrossRefGoogle Scholar
Zhao, J., Deng, Q., Bachmatiuk, A., Sandeep, G., Popov, A., Eckert, J., Rümmeli, M.H., Science 343, 1228 (2014).CrossRefGoogle Scholar
Banhart, F., Nanoscale 1, 201 (2009).Google Scholar
Gan, Y., Sun, L., Banhart, F., Small 4, 587 (2008).CrossRefGoogle Scholar
He, Z., He, K., Robertson, A.W., Kirkland, A.I., Kim, D., Ihm, J., Yoon, E., Lee, G.-D., Warner, J.H., Nano Lett. 14, 3766 (2014).CrossRefGoogle Scholar
Rodríguez-Manzo, J.A., Pham-Huu, C., Banhart, F., ACS Nano 5, 1529 (2011).CrossRefGoogle Scholar
Cretu, O., Rodríguez-Manzo, J.A., Demortière, A., Banhart, F., Carbon 50, 259 (2012).CrossRefGoogle Scholar
Cretu, O., Krasheninnikov, A.V., Rodriguez-Manzo, J.A., Sun, L.T., Banhart, F., Nieminen, R.M., Phys. Rev. Lett. 105, 196102 (2010).CrossRefGoogle Scholar
Wang, W.L., Santos, E., Jiang, B., Cubuk, E., Ophus, C., Centeno, A., Pesquera, A., Zurutuza, A., Ciston, J., Westervelt, R.M., Nano Lett. 14, 450 (2014).CrossRefGoogle Scholar
Wang, H., Li, K., Cheng, Y., Wang, Q., Yao, Y., Schwingenschlögl, U., Zhang, X., Yang, W., Nanoscale 4, 2920 (2012).CrossRefGoogle ScholarPubMed
Erni, R., Rossell, M.D., Nguyen, M.-T., Blankenburg, S., Passerone, D., Hartel, P., Alem, N., Erickson, K., Gannett, W., Zettl, A., Phys. Rev. B: Condens. Matter 82, 165443 (2010).CrossRefGoogle Scholar
Warner, J.H., Liu, Z., He, K., Robertson, A.W., Suenaga, K., Nano Lett. 13, 4820 (2013).CrossRefGoogle Scholar
Krasheninnikov, A., Lehtinen, P., Foster, A., Pyykkö, P., Nieminen, R., Phys. Rev. Lett. 102, 126807 (2009).CrossRefGoogle Scholar
Alem, N., Erni, R., Kisielowski, C., Rossell, M.D., Gannett, W., Zettl, A., Phys. Rev. B: Condens. Matter 80, 155425 (2009).CrossRefGoogle Scholar
Kotakoski, J., Jin, C., Lehtinen, O., Suenaga, K., Krasheninnikov, A., Phys. Rev. B: Condens. Matter 82, 113404 (2010).CrossRefGoogle Scholar
Zobelli, A., Gloter, A., Ewels, C., Seifert, G., Colliex, C., Phys. Rev. B: Condens. Matter 75, 245402 (2007).CrossRefGoogle Scholar
Cretu, O., Lin, Y.-C., Suenaga, K., Nano Lett. 14, 1064 (2014).CrossRefGoogle Scholar
Gibb, A.L., Alem, N., Chen, J.-H., Erickson, K.J., Ciston, J., Gautam, A., Linck, M., Zettl, A., J. Am. Chem. Soc. 135, 6758 (2013).CrossRefGoogle Scholar
Warner, J.H., Rümmeli, M.H., Bachmatiuk, A., Büchner, B., ACS Nano 4, 1299 (2010).CrossRefGoogle Scholar
Wei, X., Wang, M.-S., Bando, Y., Golberg, D., ACS Nano 5, 2916 (2011).CrossRefGoogle Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464, 571 (2010).CrossRefGoogle Scholar
Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., Ajayan, P.M., Nat. Mater. 9, 430 (2010).CrossRefGoogle Scholar
Hansen, L.P., Ramasse, Q.M., Kisielowski, C., Brorson, M., Johnson, E., Topsøe, H., Helveg, S., Angew. Chem., Int. Ed. 50, 10153 (2011).CrossRefGoogle Scholar
Liu, Z., Suenaga, K., Wang, Z., Shi, Z., Okunishi, E., Iijima, S., Nat. Commun. 2, 213 (2011).CrossRefGoogle Scholar
Lin, Y.-C., Dumcenco, D.O., Huang, Y.-S., Suenaga, K., Nat. Nanotechnol. 9, 391 (2014).CrossRefGoogle Scholar
Zan, R., Ramasse, Q.M., Jalil, R., Georgiou, T., Bangert, U., Novoselov, K.S., ACS Nano 7, 10167 (2013).CrossRefGoogle Scholar
Algara-Siller, G., Kurasch, S., Sedighi, M., Lehtinen, O., Kaiser, U., Appl. Phys. Lett. 103, 203107 (2013).CrossRefGoogle Scholar
Zhou, W., Kapetanakis, M.D., Prange, M.P., Pantelides, S.T., Pennycook, S.J., Idrobo, J.-C., Phys. Rev. Lett. 109, 206803 (2012).CrossRefGoogle Scholar