Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:18:35.618Z Has data issue: false hasContentIssue false

Ab Initio Design of Two-Photon Absorbing Materials

Published online by Cambridge University Press:  10 February 2011

Paul N. Day
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson AFB, OH 45433-7792, Paul.Day@afrl.af.mil
Kiet A. Nguyen
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson AFB, OH 45433-7792, Paul.Day@afrl.af.mil
Ruth Pachter
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate, AFRL/MLPJ, Wright-Patterson AFB, OH 45433-7792, Paul.Day@afrl.af.mil
Get access

Abstract

Two-photon absorbing materials such as conjugated polyenes show promise as nonlinear optical materials. Prediction of two-photon absorption frequencies and cross-sections has been limited by the high level of ab initio calculations that must be carried out in order to accurately calculate excited state energies and transition dipole moments, by the size of many of the compounds of interest, and by the difficulty of handling condensed phase effects in the calculations. We have carried out geometry optimizations at the multi-configurational selfconsistent field level on a small polyene, hexatriene, both in the gas-phase and in solution, with the solvent effects being modeled by the effective fragment potential. The excited-state energies have been calculated by the multiconfigurational quasidegenerate perturbation theory. Transition dipole moment calculations have also been carried out, from which the two-photon absorption cross-section can be estimated. The results indicate that just one or two solvent molecules can have a large effect on the nonlinear optical properties of two-photon absorbing materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Serrano-Andres, L., Merchan, M., Nebot-Gil, I., Lindh, R. and Roos, B. O. J. Chem. Phys. 98, 3151 (1993).Google Scholar
2. Luo, Y., Agren, H. and Stafstrom, S., J. Phys. Chem. 98, 7782(1994).Google Scholar
3. Garavelli, M., Celani, P., Bernardi, F., Robb, M. A. and Olivucci, M., J. Am. Chem. Soc. 119, 11487 (1997).Google Scholar
4. Flicker, W. M., Mosher, O. A. and Kuppermann, A., Chem. Phys. Lett. 45, 492(1977).Google Scholar
5. Fujii, W. M., Kamata, A., Shimizu, M., Adachi, Y. and Maeda, S., Chem. Phys. Lett. 115, 492 (1985).Google Scholar
6. Day, P. N., Jensen, J. H., Gordon, M. S., Webb, S. P., Stevens, W. J., Krauss, M., Garmer, D., Basch, H. and Cohen, D., J. Chem. Phys. 105, 1968(1996).Google Scholar
7. Jensen, J. H., Day, P. N., Gordon, M. S., Basch, H., Cohen, D., Garmer, D. R., Kraus, M. and Stevens, W.J., Modeling the Hydrogen Bond (American Chemical Society Symposium Series, Chicago, Illinois, 1994) 139151.Google Scholar
8. Chen, W. and Gordon, M. S., J. Chem. Phys. 105, 11081(1996).Google Scholar
9. Krauss, M. and Webb, S. P., J. Chem. Phys. 107, 5771(1997).Google Scholar
10. Day, P. N. and Pachter, R., J. Chem. Phys. 107, 2990(1997).Google Scholar
11. Webb, S. P. and Gordon, M. S., J. Phys. Chem. A 103, 1265(1999).Google Scholar
12. Day, P. N., Wang, Z. Q. and Pachter, R., J. Phys. Chem. 99, 9730(1995).Google Scholar
13. Wladkowski, B. D., Kraus, M. and Stevens, W. J., J. Am. Chem. Soc. 117, 10537(1995).Google Scholar
14. Krauss, M., Comp. and Chem. 19, 199(1995).Google Scholar
15. Day, P. N., Pachter, R., Gordon, M. S. and Merrill, G. N., J. Chem. Phys. 112, 2063(2000).Google Scholar
16. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Jensen, J. H., Koseki, S., Gordon, M. S., Nguyen, K. A., Windus, T. L. and Elbert, S. T., QCPE Bulletin 10, 52(1990).Google Scholar
17. Dunning, T. H. J. and Hay, P. J., Methods of Electronic Structure Theory (Plenum Press, New York, 1977).Google Scholar
18. Nakano, H., J. Chem. Phys. 99, 7983(1993).Google Scholar
19. Merrill, G. N. and Gordon, M. S., J. Phys. Chem. A 102, 2650(1998).Google Scholar
20. Albota, M., Beljonne, D., Bredas, J. L., Ehrlich, J. E., Fu, J. Y., Heikal, A. A., Hess, S. E., Kogej, T., Levin, M. D., Marder, S. R., McCord-Maughon, D., Perry, J. W., Rockel, H., Rumi, M., Subramaniam, G., Webb, W. W., Wu, X. L. and Xu, C., Science 281, 1653(1998).Google Scholar