Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:10:13.589Z Has data issue: false hasContentIssue false

AB Initio Study of Changes in the Magnetism of Iron During the BCC-HCP Phase Transformation

Published online by Cambridge University Press:  10 February 2011

M. Šob
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, mojmir@ipm.cz
M. Friák
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, mojmir@ipm.cz Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
L.G. Wang
Affiliation:
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech Republic, mojmir@ipm.cz
V. Vitek
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, PA 19104-6272, U. S. A.
Get access

Abstract

The pressure-induced bcc-hcp transformation in iron is studied ab initio by following a constant-volume one-parameter transformation path. The calculations are performed in the generalized gradient approximation (GGA). It is shown that the analysis of both spin-polarized and non-spin-polarized states is essential in order to correctly obtain the energetics of the phase transformation. Our calculations make it possible to locate, with high precision, the transition configuration at which the bcc ferromagnetic structure transforms into the hcp nonmagnetic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dubrovinsky, L., Saxena, S.K., Lazor, P., and Weber, H.P., Science 281, 11a (1998); D. Andrault, G. Fiquet, M. Kunz, F. Visocekas, and D. Haiiserman, Science 281, 11a (1998).Google Scholar
2. Bancroft, D., Peterson, E.L., and Minshall, S., J. Appl. Phys. 27, 291 (1956).Google Scholar
3. Wang, F.M. and Ingalls, R., Phys. Rev. B 57, 5647 (1998).Google Scholar
4. Ekman, M., Sadigh, B., Einarsdotter, K., and Blaha, P., Phys. Rev. B 58, 5296 (1998).Google Scholar
5. Burgers, W.G., Physica 1, 561 (1934).Google Scholar
6. Chen, Y., Ho, K.M., and Harmon, B.N., Phys. Rev. B 37, 283 (1988).Google Scholar
7. Paidar, V., Wang, L.G., Šob, M., and Vitek, V., Modelling and Simulation in Mat. Sci. Eng., to be published.Google Scholar
8. Craievich, P., Sanchez, J.M., Watson, R.E., and Weinert, M., Phys. Rev. B 55, 787 (1997).Google Scholar
9. Craievich, P., Weinert, M., Sanchez, J.M., and Watson, R.E., Phys. Rev. Lett. 72, 3076 (1994).Google Scholar
10. Šob, M., Wang, L.G., and Vitek, V., Comp. Mat. Sci. 8, 100 (1997).Google Scholar
11. Andersen, O.K., Methfessel, M., Rodriguez, C.O., Blöchl, P., and Polatoglou, H.M., in Atomistic Simulations of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D.J. (Plenum, New York-London, 1989), p. 1.Google Scholar
12. Blaha, P., Schwarz, K., Dufek, P., and Augustyn, R., WIEN95, Technical University of Vienna 1995 (improved and updated Unix version of the original copyrighted WIEN-code, which was published by Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S.B., Comput. Phys. Commun. 59, 399 (1990).Google Scholar
13. Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
14. Šob, M., Friák, M., Wang, L.G., and Vitek, V., to be published.Google Scholar