Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T19:07:35.263Z Has data issue: false hasContentIssue false

Ab Initio Study of Surface Stresses of Charged Au films

Published online by Cambridge University Press:  01 February 2011

Yoshitaka Umeno
Affiliation:
umeno@kues.kyoto-u.ac.jp, Kyoto University, Dept. of Mechanical Engineering and Science, Yoshida-hommachi, Sakyo-ku, Kyoto, Kyoto, 606-8501, Japan, +81-75-753-5256, +81-75-753-5256
Joerg Weissmueller
Affiliation:
Joerg.Weissmueller@int.fzk.de, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Karlsruhe, 76021, Germany
Christian Elsaesser
Affiliation:
el@iwm.fhg.de, Fraunhofer-Institut fuer Werkstoffmechanik IWM, Freiburg, Freiburg, 79108, Germany
Bernd Meyer
Affiliation:
Bernd.Meyer@theochem.ruhr-uni-bochum.de, Ruhr-Universitaet Bochum, Bochum, Bochum, 44780, Germany
Peter Gumbsch
Affiliation:
peter.gumbsch@iwm.fraunhofer.de, Universitaet Karlsruhe, IZBS, Karlsruhe, Karlsruhe, 76131, Germany
Get access

Abstract

It has been observed in experiments that charging of nanometer-sized porous material can lead to expansion or contraction of this material. This effect can be explained by a change in surface stress as a function of surface electron charge density. Here, we employ ab initio density functional calculations using a mixed-basis pseudopotential approach to study the change in surface stresses, f, as a function of surface charge density, q for Au thin films with (111) and (100) surfaces. The derivative of the surface stress with respect to the charge, ôf/ôq, at equilibrium is related to and can be evaluated from ôμ/ôe of an uncharged slab, where μ is the chemical potential of the slab and e the tangential strain. The responses of the (111) and (100) surfaces to charging are evaluated in this way as −1.86 V and −0.90 V, respectively. The calculated values compare well to experimental observations (−0.9 V).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kramer, D., Viswanath, R. N. and Weissmüller, J., Nano Letters Vol. 4, 793 (2004).Google Scholar
2. Weissmüller, J., Viswanath, R. N., Kramer, D., Zimmer, P., Würschum, R. and Gleiter, H., Science 300, 312 (2003).Google Scholar
3. Ibach, H., Surf. Sci. Reports 29, 193 (1997).Google Scholar
4. Haiss, W., Rep. Prog. Phys. 64, 591 (2001).Google Scholar
5. Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P. and Fähnle, M., J. Phys. Condens. Matter 2, 4371 (1990).Google Scholar
6. Ho, K. M., Elsässer, C., Chan, C. T. and Fähnle, M., J. Phys. Condens. Matter 4, 5189 (1992).Google Scholar
7. Meyer, B., Hummler, K., Elsässer, C. and Fähnle, M., J. Phys. Condens. Matter 7, 9201 (1995).Google Scholar
8. Vasiljevic, N., Trimble, T., Dimitrov, N., Sieradzki, K., Langmuir 20, 6639 (2004).Google Scholar
9. Haiss, W., Nichols, R. J., Sass, J. K., Charle, K. P., J. Electroanal. Chem. 452, 199 (1998).Google Scholar
10. Viswanath, R. N., Kramer, D., Weissmüller, J., Langmuir 21, 4604 (2005).Google Scholar
11. Friesen, C., Dimitrov, N., Cammarata, R. C., Sireadzki, K., Langmuir 17, 807 (2001).Google Scholar