Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T17:23:41.918Z Has data issue: false hasContentIssue false

Ablation Lithography for TFT-LCD

Published online by Cambridge University Press:  17 March 2011

Kenkichi Suzuki
Affiliation:
Displays, Hitachi, Ltd., 3300 Hayano, Mobara, Japan
Nobuaki Hayashi
Affiliation:
Displays, Hitachi, Ltd., 3300 Hayano, Mobara, Japan
Hiroshi Masuhara
Affiliation:
Applied Physics Department, Osaka University, Suita, Osaka, Japan
Thomas K. Lippert
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
Get access

Abstract

Ablation lithography is based on the photo-decomposition ablation of polymer materials by excimer laser. It is a self-development process, and accordingly possible to reduce the throughput time and manufacturing cost of TFT-LCD. The major alterations from the conventional photolithography are the resist material and the mask. Developing both the technologies and using an experimental exposure& aligner, we fabricated a TFT pattern on 300 × 400 mm2 glass substrate. The result proves the feasibility of EAL as an high throughput lithography suitable for a-Si TFT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kawamura, Y., Toyoda, K., and Namba, S., Appl. Phys. Lett. 40, 374 (1982)Google Scholar
2. Srinivasan, R., Mayne-Banton, V., Appl. Phys. Lett. 41, 578 (1982)Google Scholar
3. Patel, R. S., Redmond, T. F., Tessler, C., Tudryn, D., and Pulaski, D., Intn'l J. Microcircuit and Electronic Packaging 18, 266 (1995)Google Scholar
4. Davis, G.M., Gibson, A.F., Gower, M.C., Lawes, R.A. and Moody, R.A., in Microcircuit Engineering '83 (Cambridge, 1983)Google Scholar
5. Suzuki, K., Matsuda, M., Ogino, T., Hayashi, N., Terabayashi, T., and Amemiya, K., Proc. SPIE 2992, 98 (1997)Google Scholar
6. Shannon, M. A. and Russo, R. E., Appl. Phys. Lett. 67, 3227 (1995)Google Scholar
7. Lang, L., Absorption spectra in the ultraviolet and visible region, (Publishing House of Hungarian Academy of Science, Budapest, 1964) vol.2 Google Scholar
8. Kueper, S. and Brannon, J., Proc. SPIE 1598, 27 (1991)Google Scholar
9. S. Bennett, M. W., The synthesis and UV-laser ablation of polyurethane, Thesis, University of Hull (1995)Google Scholar
10. Srinivasan, R., Casey, K. G., and Braren, B., Chemtronics 4, 153 (1989)Google Scholar
11. Rainer, F., Lowdermilk, W. H., Milam, D., Carniglia, C. K., Hart, T. T., and Lichtenstein, T. L., Appl. Opt. 24, 496 (1985)Google Scholar
12. Born, M. and Wolf, E., Principle of optics, (Pergamon Press, 4th ed. 1970) pp.5170 Google Scholar
13. Fukumura, H., Mibuka, N., Eura, S., Masuhara, H., and Nishi, N., J. Phys. Chem. 97, 13761 (1993)Google Scholar
14. Lippert, T., Yabe, A., and Wokaun, A., Adv. Mater. 9, 105 (1997)Google Scholar
15. Lippert, T., Bennett, L. S., Kunz, T., Hahn, C., Wokaun, A., Furutani, H., Fukumura, H., Masuhara, H., Nakamura, T., and Yabe, A., Proc. SPIE 2992, 135 (1997)Google Scholar