Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T11:44:18.305Z Has data issue: false hasContentIssue false

Accurate analysis of the piezopotential and the stored energies in laterally bent piezo-semiconductive NWs

Published online by Cambridge University Press:  28 June 2013

Rodolfo Araneo*
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Giampiero Lovat
Affiliation:
DIAEE - Sapienza University of Rome, Via Eudossiana 18, 00184, Rome
Christian Falconi
Affiliation:
Department of Electronic Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133, Rome CNR IDASC, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
Andrea Notargiacomo
Affiliation:
Institute of Photonics and Nanotechnology – CNR, Via Cineto Romano 42, 00156, Rome , Italy
Antonio Rinaldi
Affiliation:
University of L'Aquila, International Research Center for Mathematics & Mechanics of Complex System (MEMOCS), Via S. Pasquale, 04012, Cisterna di Latina (LT), Italy ENEA ,C.R. Casaccia, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
Get access

Abstract

Here we study the piezopotential, the carrier concentration, and the stored energies in laterally bent piezo-semiconductive NWs with total-bottom contact. Moreover, we give reasons for the well-known existence of two regions where the piezopotential has an opposite sign in comparison with the rest of the NW. Finally, we provide an upper limit to the static mechanicalto-electrical conversion efficiency by computing the ratio between the total stored electrostatic energy and the total (mechanical and electrostatic) stored energy. Our results can provide guidelines for designing devices based on laterally bent piezoelectric NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z. L., Song, J. H., Science, 312, 242–6 (2006).CrossRefGoogle ScholarPubMed
Wang, X. D., Song, J. H., Liu, J., Wang, Z. L., Science 316, 102–5 (2007).CrossRefGoogle Scholar
Wang, Z. L., Nano Today, 5, 540 (2010).CrossRefGoogle Scholar
Araneo, R., Falconi, C., Nanotechnology, 24, 265707, (2013).CrossRefGoogle Scholar
Araneo, R., Lovat, G., Burghignoli, P., Falconi, C., Adv. Mater., 24, 4719–24 (2012).CrossRefGoogle Scholar
Yang, Q., Wang, W., Xu, S., Wang, Z. L., Nano Lett., 11, 4012, (2011).CrossRefGoogle Scholar
Yang, Q., Guo, X., Wang, W., Zhang, Y., Xu, S., Lien, D. H., Wang, Z. L. ACS Nano, 4, 6285, (2010)CrossRefGoogle Scholar
Shi, J., Starr, M. B., and Wang, X., Adv. Mater., 24, 4683, (2012)CrossRefGoogle Scholar
Gao, Y., Wang, Z. L., Nano Lett., 8, 2499–505, (2007).CrossRefGoogle Scholar
Gao, Y., Wang, Z. L., Nano Lett., 9, 1103 (2009).CrossRefGoogle Scholar
Mantini, G., Gao, Y., D’Amico, A., Falconi, C., Wang, Z. L., Nano Research, 2, 624629 (2009)CrossRefGoogle Scholar
Falconi, C., Mantini, G., D’Amico, A., Wang, Z. L., Sensor. Actuat. B - Chem., 139, 511 (2009).CrossRefGoogle Scholar
Vasileska, D., Goodnick, S. M., Klimeck, G., Computational Electronics, (CRC Press, New York, 2010).Google Scholar
Romano, G., Mantini, G., Di Carlo, A., D'Amico, A., Falconi, C., Wang, Z. L., Nanotechnology, 22, 465401 (2011).CrossRefGoogle Scholar