Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:11:08.778Z Has data issue: false hasContentIssue false

Actinide Materials Research Supported by the Office of Basic Energy Sciences, U.S. Department of Energy

Published online by Cambridge University Press:  01 February 2011

Lester R. Morss*
Affiliation:
Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE), Washington, DC 20585, U.S.A.
Get access

Abstract

The fundamental research topic in actinide chemistry and materials sciences is the role that the 5f electrons play in bond formation, which provides the central focus for DOE BES-supported actinide science. Structural systematics of the actinide metals, oxides, and other compounds as a function of atomic number are well established. Magnetic measurements have shown that the light actinide metals have delocalized 5f orbitals (i.e., the 5f electrons form bands), whereas the f electrons become localized at americium. Thus, the magnetic behavior of the first part of the actinide series resembles that of the d transition metals whereas the heavier actinides exhibit behavior similar to the rare earth metals. Spectroscopic results have established electronic energy levels, crystal field splitting, and near-neighbor coordination. The 5f orbitals participate in the band structure of materials that contain the light actinide metals and some of their intermetallic compounds, and perhaps in molecular compounds. Molecular-level information on the geometry and bonding in solids, at surfaces, and in clusters can now be obtained at BES-supported facilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seaborg, G. T. in The Actinide Elements, edited Seaborg, G. T. and Katz, J. J., National Nuclear Energy Series, Div. IV, vol. 14A, McGraw-Hill, New York, 1954, ch. 17.Google Scholar
2. Gruen, D. T. in Transuranium Elements: A Half Century, edited by Morss, L. R. and Fuger, J., (American Chemical Society, Washington, D.C.) pp. 6377.Google Scholar
4. Choppin, G. R. and Stout, B. E., Chem. in Britain, Dec. 1991, pp. 11261129.Google Scholar
5. Meyer, G. and Morss, L. R., editors, Synthesis of Lanthanide and Actinide Compounds, Kluwer Academic Publishers, Dordrecht, 1991.Google Scholar
6. Schlesinger, H. I. and Brown, H. C., J. Am. Chem. Soc. 75, 219 (1953).Google Scholar
7. Banks, R. H., Edelstein, N. M., Rietz, R. R., Templeton, D. H., and Zalkin, A., J. Am. Chem. Soc. 100, 1957 (1978).Google Scholar
8. Gibson, J. K., Int. J. Mass Spectrom. 214, 1 (2002).Google Scholar
9. Han, J., Kaledin, L. A., Goncharov, V., Komissarov, A. V., and Heaven, M. C., J. Am. Chem. Soc. 125, 7176 (2003);Google Scholar
Han, J., Goncharov, V., Kaledin, L. A., Komissarov, A. V., and Heaven, M. C., J. Chem. Phys. in press.Google Scholar
10. Backe, H. et al., J. Nucl. Sci. Technol. Suppl. 3, 86 (2002).Google Scholar
11. Smith, J. L. and Kmetko, E. A., J. Less Comm. Metals 90, 83 (1983).Google Scholar
12. Haire, R. G., Heathman, S., Idiri, M., LeBihan, T., Lindbaum, A., and Rebizant, J., Phys. Rev. B67, 134101 (2003).Google Scholar
13. Lindbaum, A., Heathman, S., Haire, R. G., Idiri, M., and Lander, G. H., J. Phys.: Condensed Matter 15, S2297 (2003).Google Scholar
14. Arko, A. J., Joyce, J. J., Morales, L., and Lashley, J., Phys. Rev. B 62, 1773 (2000).Google Scholar
15. Wong, J., Krisch, M., Farber, D. L. et al., Science 301, 1078 (2003)Google Scholar
16. Sarrao, J. L. et al., Nature 420, 297 (2002).Google Scholar
17. Sarrao, J. L., Morales, L. A., and Thompson, J. D., JOM-J. Minerals, Metals, and Materials Soc. 55, 38 (2003).Google Scholar
18. Neu, M. P., Matonic, J. H., Ruggiero, C. E., and Scott, B. L., Angew. Chem. Internat Ed. 39, 1443 (2000).Google Scholar
19. Chiang, M.-H., Soderholm, L., and Antonio, M. R., Eur. J. Inorg. Chem. 2003, 2663 (2003).Google Scholar
20. Minervini, L., Grimes, R. W., Sickafus, K. E., J. Amer. Ceram. Soc. 83, 1873 (2000).Google Scholar
21. Digeos, A. A., Valdez, J. A., Sickafus, K. E., Atiq, S., Grimes, R. W., and Boccaccini, A. R., J. Mater. Sci. 38, 15971604 (2003).Google Scholar
22. Afanasyev-Charkin, I. V., Sickafus, K. E., J. Nucl. Mater. 306, 112120 (2002).Google Scholar
23. Sickafus, K. E., Minervini, L., Grimes, R. W., Valdez, J. A., Ishimaru, M., Li, F., McClellan, K. J., Hartmann, T., Science 289, 748 (2000).Google Scholar
24. Kudin, K. N., Scuseria, G. E., and Martin, R. L., Phys. Rev. Lett. 89, 6402 (2002).Google Scholar
25. Dai, X., Savrasov, S. Y., Kotliar, G., Migliori, A., Ledbetter, H., and Abrahams, E., Science 300, 953 (2003).Google Scholar