Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:49:00.743Z Has data issue: false hasContentIssue false

Analysis of the HF-Etihanol Cleaning Process on Silicon Wafers with 100 Vicinal Surfaces

Published online by Cambridge University Press:  21 February 2011

J. Portillo
Affiliation:
Serveis Cientifico-Tènics, Universitat de Barcelona, Cl Martí Franquesa s/n, 08028 Barcelona, Spain
J. Gual
Affiliation:
Serveis Cientifico-Tènics, Universitat de Barcelona, Cl Martí Franquesa s/n, 08028 Barcelona, Spain
G. Sarrabayrouse
Affiliation:
LAAS-CNRS, 7 av. Colonel Roche, 31077 Toulouse, Cedex, France
J.J. Morante
Affiliation:
LCMM, Dpt. Física Aplicada i Electrbnica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) measurements on silicon surfaces cleaned by HF/Ethanol treatments are described using silicon wafers with (100) vicinal surfaces. The composition of the surfaces (Silicon, Oxygen, Fluorine and Carbon) has been measured leading to the conclusion of good passivated surfaces. Moreover, for each vicinal direction, the F1s, C1s,O1s and Si2p lines have been decomposed into several components corresponding to different chemical bonds.

The more significant results show that the percentages of the two components for Fluorine depend on the total amount of Oxygen and are related to the Si-F and Si-O-F bonds. On the other hand, the two complementary doublets necessary to fit the Si2p band can be related to the Si-H and Si-F bonds and change with orientation and/or roughness of the considered surface.

The native oxide formation also points out significant differences in the behaviour of each vicinal direction. The thickness and structure of the oxide and the remaining amount of Fluorine reflect the influence of the initial RMS-microroughness determined by Atomic Force Microscopy which changes from 0.05nm for (100) to 0. lnm for (911).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chabal, Y.J., Higashi, G.S., Raghavachari, K., Burrows, U.A., J. Vac., Sci. Technol. A7, 2104 (1989).CrossRefGoogle Scholar
[2] Higashi, G.S., Chabal, Y.J., Trucks, G.W., Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).CrossRefGoogle Scholar
[3] Hirose, M., Yasaka, T., Takamura, M., Miyazaki, S., Sol. Sate Technol., December 1991, pp 4348.Google Scholar
[4] Graf, D., Grundner, M. and Schultz, R., J. Vac. Sci. Technol.,A7, 3, 808, 1989 CrossRefGoogle Scholar
[5] Prom, J. L., Castagne, J., Sarrabayrouse, G. and Mufioz-Yague, A., IEE Proc., Part I, 135, 20 (1988).Google Scholar
[6] Prom, J. L., Morfouli, P., Kassmi, K., Pananakakis, G. and Sarrabayrouse, G., IEE Proc., Part G, 138:321 (1991).Google Scholar
[7] Garrido, B., Samitier, J., Morante, J.R., Fonseca, L., Campabadal, F., Appl. Surf. Science, 56–58, 861 (1992).CrossRefGoogle Scholar
[8] O'Connor, D. J., Sexton, B. A. and Smart, R. St. C. (Eds) “Surface Analysis Methods in Material Science”, Springer-Verlag, 1992 CrossRefGoogle Scholar
[9] Ermolieff, A., Martin, F., Amouroux, A., Marthon, S., Westendorp, J.F.M., Semicond. Sci. Technol., 6, 98 (1991).CrossRefGoogle Scholar
[10] Delfino, M., Salimian, S., Hodul, D., Elligboe, A. and Tsai, V., J. Appl. Phys., 71, 1001 (1992).CrossRefGoogle Scholar
[11] Sakurai, T., Hagstrum, H., Phys. Rev. B, 14, 1593 (1976).Google Scholar
[12] Ley, L., Kowalczyk, S., Pollak, R. and Shirley, D. A., Phys. Rev. Lett., 29, 1088 (1972).CrossRefGoogle Scholar