Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T06:49:25.200Z Has data issue: false hasContentIssue false

Anisotropic Electron Mobility of Two-Dimensional-Electron-Gas in Modulation Doped Inx.Ga1−y As/InyAl1−yAs Heterostructures

Published online by Cambridge University Press:  25 February 2011

Jianhui Chen
Affiliation:
Electrical and Computer Engineering Department, 0407 University of California, San Diego La Jolla, CA 92093-0407
J.M. Fernandez
Affiliation:
Electrical and Computer Engineering Department, 0407 University of California, San Diego La Jolla, CA 92093-0407
H.H. Wieder
Affiliation:
Electrical and Computer Engineering Department, 0407 University of California, San Diego La Jolla, CA 92093-0407
Get access

Abstract

We have investigated the electrical properties of the two-dimensional-electron-gas (2DEG) present in strain relaxed heterojunctions with InxGa1−xAs channels (x<0.4). These were grown by molecular beam epitaxy on misoriented (001) GaAs substrates using compositionally step graded buffer layers, … x' = 0.1 per step, each step 0.3 µm thick. The 2DEG is produced by modulation doping using lattice matched InyAl1−yAs as the carrier supply layer. We find typical electron densities and mobilities, for x=0.3, of ns(300 K) = 1.3 × 1012 cm−2 and µH(300 K) = 9300 cm2/V-s; and for ns(1.6 K) = 1.2 × 1012 cm−2, µH(1.6 K) = 37800 cm2/V-s. While the room temperature electron mobility shows negligible anisotropy, an <110>-orientation dependent low temperature electron mobility of the 2DEG is observed and attributed to dislocation scattering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fritz, I.J., Picraux, S.T., Dawson, L.R., Drummond, T.J., Laidig, W.D., and Anderson, N.G., Appl. Phys. Lett. 46, 967 (1985)Google Scholar
2 Fritz, I.J., Gourley, P.L., and Dawson, L.R., Appl. Phys. Lett. 51, 1004 (1987) W.T Read, Phil. Mag. 46, 111 (1954)Google Scholar
3. Fritz, I.J., Picraux, S.T., Dawson, L.R., Drummond, T.J., Laidig, W.D., and Anderson, N.G., Appl. Phys. Lett. 46, 967 (1985) I.J. Fritz, P.L. Gourley, and L.R. Dawson, Appl. Phys. Lett. 51, 1004 (1987) W.T Read, Phil. Mag. 46, 111 (1954)Google Scholar
4. Penchina, C.M., Farvaque, J.L., and Marut, R., J. Appl. Phys. 53, 4970 (1982)Google Scholar
5. Logan, R.A., Pearson, G.L., and Kleinman, D.A., J. Appl. Phys. 30, 885 (1959)Google Scholar
6. Duga, J.J., J. Appl. Phys. 33, 169 (1962)Google Scholar
7. Webb, C., Eckstein, J.N., and Desai, Y.M., J. Cryst. Growth 111, 309 (1991)Google Scholar
8. Sun, Q., Morris, D., Lacelle, C., and Roth, A.P., Mater. Res. Soc. Proc. 160, 783 (1989)Google Scholar
9. Schweizer, T., Kohler, K., Rothemund, W., and Ganser, P., Appl. Phys. Lett. 59, 2737 (1991)Google Scholar
10. Bahl, S.R., Azzam, W.J., and Alamo, J. A. del, J. Cryst. Growth 111, 479 (1991)Google Scholar
11. Sun, Q., Lacelle, C., Morris, D., Buchanan, M., Marshall, P., Chow-Chong, P., and Roth, A.P., Appl. Phys. Lett. 59, 1359 (1991)Google Scholar
12. Chen, Jianhui, Fernandez, J.M., and Wieder, H.H., Appl. Phys. Lett., 1992 to be published.Google Scholar
13 Chen, Jianhui, Fernandez, J.M., Chang, J.C.P., Kavanagh, K.L., and Wieder, H.H., Semicon. Sci. Technol. 7, 601 (1992)Google Scholar
14. Hsu, W.C., Chen, C.M., and Lin, W., J. Appl. Phys. 70, 4332 (1991)Google Scholar
15. Moreira, M.V. Baeta, Py, M.A., Gailhanou, M., and Ilegems, M., J. Vac. Sci. Technol. B 10, 103 (1992)Google Scholar
16. Inoue, K., Nishii, K., Matsuno, T., and Onuma, T., IEDM Tech. Digest 1987, p422 Google Scholar
17. Chang, J.C.P, Chen, Jianhui, Fernandez, J.M., Wieder, H.H., and Kavanagh, K.L., Appl. Phys. Lett., 60, 1129 (1992)Google Scholar
18. Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Maree, P.M.J., Schaff, W., Mayer, J.W., Petti, D., Woodall, J.M., Stroscio, J.A., and Feenstra, R.M., J. Appl. Phys. 64, 4843 (1988)Google Scholar
19. Kavangh, K.L., Chang, J.C.P., Chen, Jianhui, Fernandez, J.M., and Wieder, H.H., J. Vac. Sci. Technol. B 10, 1992 to be publishedGoogle Scholar
20. Vignaud, D., Farvacque, J.L., and Ferre, D., Phys. Stat. Sol. b 110, 601 (1982)Google Scholar
21. Woodall, J.M., Petti, G.D., Jackson, T.N., and Lanza, C., Phys. Rev. Lett. 51, 1783 (1983)Google Scholar
22. Zhao, D., and Kuhn, K.J., IEEE Trans. Electron Dcv. 38, 2582 (1991)Google Scholar