Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:51:31.075Z Has data issue: false hasContentIssue false

Application of Stress Measurement to the Study of Thermally Activated Processes in Thin-Film Materials

Published online by Cambridge University Press:  22 February 2011

F. J. Von Preissig
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94309
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94309
Get access

Abstract

Changes in mechanical stress occurring in unpatterned thin films on substrates at elevated temperatures can yield information about the kinetics of the controlling processes. In this study, a specialized furnace allowed stress at elevated temperatures to be measured by the optical-lever method. The furnace was designed for good temperature control, short thermal transient periods, accurate stress measurement with low scatter, and control of the gas ambient. Stress changes in phosphosilicate glass films measured during exposure to steam at 110–150°C allowed water diffusion coefficients to be calculated. Diffusivity decreased with increasing phosphorus content and with pre-annealing treatments. The effective activation energy for water sorption was about 0.43 eV. Analysis of stress changes associated with crystallization of amorphous silicon at temperatures near 600°C yielded an effective activation energy of 3.1 eV and a density change of about 1% for the transformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sharan, S., Narayan, J., Salerno, J. P., and Fan, J. C. C., in Mater. Res. Soc. Symp. Proc. 130, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Materials Research Society, Pittsburgh, 1989), pp. 153158.Google Scholar
2. Murakami, M., Kuan, T.-S., and Blech, I. A., Treatise on Materials Science and Technology (Academic Press, New York, 1982), Vol. 24, pp. 163210.Google Scholar
3. EerNisse, E. P., Appl. Phys. Lett. 30, 290 (1976).Google Scholar
4. Kern, W., RCA Rev. 32, 55 (1976).Google Scholar
5. Shioya, Y., Ikegami, K., Maeda, M., and Yanagida, K., J. Appl. Phys. 61, 561 (1987).Google Scholar
6. Blech, I. and Cohen, U., J. Appl. Phys. 53, 4202 (1982).Google Scholar
7. Yokota, K., Kageyama, T., and Katayama, S., Solid-State Electron. 28, 893 (1985).Google Scholar
8. Paduschek, P., Höpfl, Ch., and Mitlehner, H., Thin Solid Films 110, 291 (1983).CrossRefGoogle Scholar
9. Sinha, A. K., Levenstein, H. J., and Smith, T. E., J. Appl. Phys. 42, 2423 (1977).Google Scholar
10. Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electron Devices ED–34, 689 (1987).Google Scholar
11. Pan, J. T. and Blech, I., J. Appl. Phys. 55, 2874 (1984).CrossRefGoogle Scholar
12. von Preissig, F. J., J. Appl. Phys. 66, 4262 (1989).CrossRefGoogle Scholar
13. Grovenor, C. R. M., Microelectronic Materials (IOP/Hilger, Bristol U. K., 1989), p. 264.Google Scholar
14. Nagasima, N., Suzuki, H., Tanaka, K., and Nishida, S., J. Electrochem. Soc. 121, 434 (1974).Google Scholar
15. Noyori, M. and Nakata, Y., J. Electrochem. Soc. 131, 1109 (1984).CrossRefGoogle Scholar
16. Sunami, H., Itoh, Y., and Sato, K., J. Appl. Phys. 41, 5115 (1970).Google Scholar
17. Crank, J., Mathematics of Diffusion, second edition (Clarendon Press, Oxford, 1975).Google Scholar
18. Mclnemey, E. J. and Rinn, P. A., Annu. Proc. Reliab. Phys. [Symp.], 20th (1982), pp. 264267.Google Scholar
19. Kern, W., Schnäble, G. L., and Fisher, A. W., RCA Rev. 37, 3 (1976).Google Scholar
20. Nassau, K., Levy, R. A., and Chadwick, D. L., J. Electrochem. Soc. 132, 409 (1985).Google Scholar
21. Wu, I.-W., Lewis, A. G., Huang, T.-Y. and Chiang, A., SED Int'l. Symp. Tech. Digest (1990), pp. 307310.Google Scholar
22. Wu, I.-W., Chiang, A., Fuse, M., öveçoglu, L., and Huang, T.-Y., J. Appl. Phys. 65, 4036 (1989).Google Scholar