Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T03:53:22.823Z Has data issue: false hasContentIssue false

Assembly Design Concepts and Methods of Tailoring of CNT Orientation and Dispertion for Damping/Dynamic Properties of Nanoparticle-Reinforced Multifunctional Materials

Published online by Cambridge University Press:  26 February 2011

Maksim Kireitseu
Affiliation:
maksim@tridentworld.com, University of Sheffield, Mechanical Eng., Mappin street, Sheffield, N/A, N/A, United Kingdom
G.R. Tomlinson
Affiliation:
Department of Mechanical Engineering, Rolls-Royce Centre in Damping, the University of Sheffield, Mappin Street, Sheffield S1 3JD, the United Kingdom
R.A. Williams
Affiliation:
Institute for Particle Science & Engineering, School of Process, Environmental & Materials Engineering, the University of Leeds, Leeds, LS2 9JT, the United Kingdom
Get access

Abstract

In this paper, the concepts of nanotechnology-based fan blade have been introduced and CNT-reinforced hollow micro-balloon-based syntactic foams/composites and damping coatings have been applied so as to develop the next generation aerospace components. The focus in this paper is directed toward the development of the next generation of vibration damping systems, providing a road map to manufacturing technology and design solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chung, T.R., Journal of Materials Science 36, 57335737 (2001).Google Scholar
2 Harris, C.E., Shuart, M.J., and Hugh, R., Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures (NASA Langley Res. Center, Hampton, USA, 2002), p.175.Google Scholar
3 DeBatist, R., J. de Physique (Paris), Colloque C9, 44(12), 3945 (1983).Google Scholar
4 Kelly, A., Proceedings of the UK Royal Society A 344, 287302 (1970).Google Scholar
5 Ru, C.Q., Encyclopedia of nanoscience and nanotechnology (Amer. Scientif. Publish., USA, 2003), p. 520.Google Scholar
6 Harris, P.F., Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, 1999), p.540.Google Scholar
7 Talay, T., Systems Analysis of Nanotube Technology (NASA, Wash., D.C., 2000), p. 240.Google Scholar
8 Koratkar, N., Wei, B., Ajayan, P.M., Compos. Sci. Technol. 63, 15251531 (2003).Google Scholar
9 Koratkar, N., Ajayan, P.M., Adv. Mater. 14(13-14): 9971000 (2002).Google Scholar
10 Suhr, J., Schadler, L., Ajayan, P. and Koratkar, N., in Proc. of 46th AIAA/ASME/ASCE/ AHS/ASC Struct., Dynamics & Materials Conf., 18 - 21 April 2005, Austin, Texas, USA Google Scholar
11 Koratkar, N., Wei, B.Q. and Ajayan, P.M., in Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Struct., Dynamics and Materials Conf., 22-25 April 2002, Denver, Colorado, USA.Google Scholar
12 Coopera, C.A. et al., Compos. Sci. and Technol. 62, 11051112 (2002).Google Scholar
13 Ajayan, P.M., Schadler, LS, Giannaris, C, Rubio, A. Adv. Mater. 12(10): 750753 (2000).Google Scholar
14 Zhang, Z., Wei, B., Ramanath, G., Ajayan, P.M.. Appl. Phys. Letters 77: 3764 (2000).Google Scholar
15 Wei, B., Zhang, Z., Ramanath, G., Ajayan, P.M.. Appl. Phys. Letters 77: 2985 (2000)Google Scholar
16 Zhou, X., Shin, E., Wang, K.W., Bakis, C.E., Compos. Sci. Technol. 71, 18251831 (2004).Google Scholar
17 Peeterbroeck, S., Compos. Sci. Technol. 68, 16271631 (2004).Google Scholar
18 Gojny, F.H., Chemical Physics Letters 370, 820824 (2003).Google Scholar
19 Gojny, F.H., Compos. Sci. and Technol. 64, 23632371 (2004).Google Scholar
20 Botelh, E.C. oa et al., Comp. Sci. and Technol. 63, 18431855 (2003).Google Scholar
21 Sinnott, S.B., J. Nanosci. Nanotechnol. 2(2), 113123 (2002).Google Scholar
22 Hepburn, C, Polyurethane elastomers, (sec. ed.) (Elsevier Applied Science, London, 2001).Google Scholar
23 Sperling, L.H. Polymeric multicomponent materials, (Wiley, New York, 1997).Google Scholar
24 Terentjev, E M and Warner, M, The European Physical Journal E 4, 343353 (2001).Google Scholar
25 Kireitseu, M.V., Yerakhavets, S.G., Basenuk, V. L., Belotserkovski, V.. in Proceedings of the SAMPE 34th Conference. “Affordable Materials Technology - Platform to Global Value and PerformanceLong Beach Convention Center, Long Beach CA, May 12 - 16, 2002, pp. 360376.Google Scholar
26 Bhushan, B. (ed.), Handbook of Nanotechnology (Springer-Verlag, New York, 2004).Google Scholar
27 Carrere, N., Lardillier, F., Vidal-Setif, M.-H., Valle, R., Mater. Sci. Technol. 19, 669 (2003).Google Scholar
28 Gu, J.H., Zhang, X.N., Gu, M.Y., Mater. Lett. 58, 1952 (2004).Google Scholar
29 Kireitseu, M.V., in Proceedings of the 104th Annual Meeting & Exposition of the American Ceramic Society, ed. by Geiger, G.. St. Louis, Missouri, April 29, 2002, pp. 320334 Google Scholar
30 Kireitseu, M.V., Nemerenco, I., and Fedaravichus, A.. in Proceedings of the Annual meeting of the Materials Research Society, December 2-6, 2002, Boston, MA, USA, pp. 234240.Google Scholar
31 Kireitsev, M.V., Basinuk, V.L. Proc. book of Brest State Polytech. Univ. 12, 2332 (2002).Google Scholar
32 Favstov, Y.K., Zhuravel, L.V., Kochetkova, L.P., Metal Sci. and Heat Treatment 45(11–12), 1618 (2003).Google Scholar
33 Deming, Y., Xinfang, Y., Jin, P., Journal of Material Science Letters 12, 252263 (1993).Google Scholar
34 Wilson, D.M., ASM Engineered Materials Handbook, Vol.1 (2001), p. 340.Google Scholar
35 Patsias, S., Saxton, C., Shipton, M., Materials Sc. and Eng. A 370, 412416 (2004).Google Scholar
36 Yerakhavets, L., Kireitseu, M. (INVITED). in Proceedings of AESF SUR/FIN 2002, ed. by Baker, D., Nosti, D. Grubbes, C., Jozefowicz, M.. June 22-27, Chicago, IL, USA, pp. 240245.Google Scholar