Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T11:09:33.420Z Has data issue: false hasContentIssue false

B2 Phases and their Defect Structures: Part I. Ab Initio Enthalpy of Formation and Enthalpy of Mixing in the Al-Ni-Pt-Ru System

Published online by Cambridge University Press:  26 February 2011

Sara Prins
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park PA-16802, USA CSIR-NML, PO Box 395, Pretoria, 0001, South Africa
Raymundo Arroyave
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park PA-16802, USA
Chao Jiang
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park PA-16802, USA Department of Materials Science and Engineering, Iowa State University, Ames, IA-50011, USA
Zi-Kui Liu
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, University Park PA-16802, USA
Get access

Abstract

The enthalpies of formation of the bcc phases in the Al-Ni-Pt-Ru system, particularly in the Al-Ru binary and Pt-Al-Ru ternary subsystems, were calculated by first principle methods. The enthalpies of formation for stoichiometric bcc-B2 phases have been calculated using both the GGA and LDA approximations, while the enthalpies of formation for B2 phases with large amounts of constitutional defects (both vacancies and anti-site atoms) were calculated using the Special Quasirandom Structures (SQS) approach. The enthalpies of mixing for the disordered bcc-A2 phases have also been calculated with SQS by mimicking the random bcc alloy with the local pair and multisite correlation functions. The calculated B2 lattice parameters for the different defect structures were compared with experimental results. These results are used as input values for the CALPHAD modified sublattice model to describe the A2/B2 phases with one Gibbs energy function.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Felten, E.J. and Pettit, F.S., Oxi. Metals, 10 (3), 189223 (1976).Google Scholar
2. Fleischer, R.L., J. Mater. Sci., 22 (7), 2281–8 (1987).Google Scholar
3. Tryon, B., Pollock, T.M., Gigliotti, M.F.X. and Hemker, K., Scripta Mater., 50 (6), 845848 (2004).Google Scholar
4. Fleischer, R.L., Acta Mat., 41 (3), 863869 (1993).Google Scholar
5. Kao, C.R., Pike, L.M., Chen, S.-L. and Chang, Y.A., Intermetallics, 2 (4), 235247 (1994).Google Scholar
6. Pike, L.M., Chang, Y.A. and Liu, C.T., Intermetallics, 5 (8), 601608 (1997).Google Scholar
7. Pike, L.M., Chang, Y.A. and Liu, C.T., Acta Mat., 45 (9), 37093719 (1997).Google Scholar
8. Bozzolo, G.H., Noebe, R.D. and Amador, C., Intermetallics, 10 (2), 149159 (2002).Google Scholar
9. Gargano, P., Mosca, H., Bozzolo, G. and Noebe, R.D., Scripta Mater., 48 (6), 695700 (2003).Google Scholar
10. Liu, K.W., Mucklich, F., Pitschke, W., Birringer, R. and Wetzig, K., Mater Sci Eng A, 313 (1–2), 187197 (2001).Google Scholar
11. Nandy, T.K., Feng, Q. and Pollock, T.M., Scripta Mater., 48 (8), 10871092 (2003).Google Scholar
12. Nandy, T.K., Feng, Q. and Pollock, T.M., Intermetallics, 11 (10), 10291038 (2003).Google Scholar
13. Pollock, T.M., Lu, D.C., Shi, X. and Eow, K., Mater Sci Eng A, 317 (1–2), 241248 (2001).Google Scholar
14. Hohls, J., Hill, P.J. and Wolff, I.M., Mater Sci Eng A, 329–331 504512 (2002).Google Scholar
15. Hu, W., Zhang, B., Shu, X. and Huang, B., J. Alloys Compnd., 287 (1–2), 159162 (1999).Google Scholar
16. Kao, C.R., Kim, S. and Chang, Y.A., Mater Sci Eng A, 192–193 (Part 2), 965979 (1995).Google Scholar
17. Dupin, N. and Ansara, I., Z. Metallk., 90 (1), 7685 (1999).Google Scholar
18. Hillert, M. and Selleby, M., J. Alloys Compnd., 329 (1–2), 208213 (2001).Google Scholar
19. Ansara, I., Dupin, N., Leo Lukas, H. and Sundman, B., J. Alloys Compnd., 247 (1–2), 2030 (1997).Google Scholar
20. Prins, S.N., Cornish, L.A., Stumpf, W.E. and Sundman, B., Calphad, 27 (1), 7990 (2003).Google Scholar
21. Prins, S.N. M.Sc, University of Pretoria, 2003.Google Scholar
22. Kresse, G. and Furthmuller, J., Comp Mater Sci, 6 (1), 1550 (1996).Google Scholar
23. Kresse, G. and Hafner, J., Phys. Rev. B, 6 (40), 8245–57 (1994).Google Scholar
24. Kresse, G. and Hafner, J., Phys. Rev. B, 48 (17), 13115–18 (1993).Google Scholar
25. Kresse, G. and Hafner, J., Phys. Rev. B, 47 (1), 558–61 (1993).Google Scholar
26. Zunger, A., Wei, S.H., Ferreira, L.G. and Bernard, J.E., Phys. Rev. Let., 65 (3), 353–6 (1990).Google Scholar
27. Jiang, C., Wolverton, C., J, S., Chen, L.-Q. and Liu, Z.-K., Phys. Rev. B, 68B 214220 (2004).Google Scholar
28. Gobran, H.A., Liu, K.W., Heger, D. and Mucklich, F., Scripta Mater., 49 (11), 10971102 (2003).Google Scholar
29. Obrowski, W., Naturwissenschaften, 47 14 (1960).Google Scholar
30. Wang, Y., Curtarolo, S., Jiang, C., Arroyave, R., Wang, T., Ceder, G., Chen, L.Q. and Liu, Z.K., Calphad, 28 (1), 7990 (2004).Google Scholar
31. Mucklich, F. and Ilic, N., Intermetallics, In Press, Corrected ProofGoogle Scholar