Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:57:27.813Z Has data issue: false hasContentIssue false

“Barrierless” Misfit Dislocation Nucleation in SiGe/Si Strained Layer Epitaxy

Published online by Cambridge University Press:  25 February 2011

D.D. Perovic
Affiliation:
Department of Metallurgy and Materials Science, 184 College Street, University of Toronto, Toronto, M5S 1A4, Canada
D.C. Houghton
Affiliation:
Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada
Get access

Abstract

The study of the critical thickness/strain phenomenon inherent in metastable, layered heterostructures has led to the development of several models which describe elastic strain relaxation. Hitherto, the nucleation of misfit dislocations required for coherency breakdown is the least well understood aspect of strain relaxation, due to the paucity of experimental data. Moreover, existing theoretical calculations predict relatively large activation energy barriers (>10 eV) for misfit dislocation nucleation in relatively low misfit (<2%) systems. In this work it will be shown that the nucleation of misfit dislocations can occur spontaneously demonstrating a vanishingly small activation energy barrier. Specifically, experimental studies of a wide range of GexSi1−x/Si (x< 0.5) hetero-structures, grown by MBE and CVD techniques, have provided quantitative data from bulk specimens on the observed misfit dislocation nucleation rate and activation energy using large-area diagnostic techniques (eg. chemical etching/Nomarski microscopy). In parallel, the strained layer microstructure was studied in detail using crosssectional and plan-view electron microscopy in order to identify a new dislocation nucleation mechanism, the ‘double half-loop’ source. From the combined macroscopic and microscopic analyses, a theoretical treatment has been developed based on nucleation stress and energy criteria which predicts a “barrierless” nucleation process exists even at low misfits (< 1%). Accordingly, the observed misfit dislocation nucleation event has been found both experimentally and theoretically to be rate-controlled solely by Peierls barrier dependent, glide-activated processes with activation energies of ∼2 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.For a recent review see: Eberl, K. and Wegscheider, W., to be published in: Handbook of Semiconductors, Vol. 3: Materials, Properties and Preparation, edited by, Mahajan, S..Google Scholar
2.For a review see: Jesser, W.A. and Merwe, J.H. van der in: Dislocations in Solids, Vol. 8, (North Holland, Amsterdam), pp. 421460 (1989); J.H. van der Merwe, in: Ann. Rev. Mater. Sci., (in press).Google Scholar
3. Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G., Kirchner, P.D., Pettit, G.D. and Woodall, J.M., J. Appl. Phys., 65, 2220 (1989).Google Scholar
4. Hull, R. and Bean, J.C., J. Vac. Sci. Technol. A, 7, 2580 (1989).Google Scholar
5. Wagner, G., Gottschalch, V., Rhan, H. and Paufler, P., Phys. Stat. Sol. (a), L13, 71 (1989).Google Scholar
6. Hirsch, P.B., Proc. Polysilicon ‘91 Conference, (in press).Google Scholar
7. Kamat, S.V. and Hirth, J.P, J. Appl. Phys., 67, 6844 (1990).Google Scholar
8. Dregia, S.A. and Hirth, J.P., J. Appl. Phys., 69, 2169 (1991).Google Scholar
9. Jagannadham, K. and Narayan, J., J. Elect. Mater., 20, 767 (1991).Google Scholar
10. Eaglesham, D.J., Kvam, E.P., Maher, D.M., Humphreys, C.J. and Bean, J.C., Philos. Mag. A, 52, 1059 (1989).Google Scholar
11. Chisholm, M.F., Kaplan, T., Mostoller, M. and Pennycook, S.J., (these proceedings).Google Scholar
12. Perovic, D.D., Weatherly, G.C., Baribeau, J.-M. and Houghton, D.C., Thin Solid Films,183, 141 (1989).Google Scholar
13. Tuppen, C.G., Gibbings, C.J. and Hockly, M., J. Cryst. Growth, 24, 392 (1989).Google Scholar
14. Humphreys, C.J., Maher, D.M., Eaglesham, D.J., Kvam, E.P. and Salisbury, I.G., J. de Phys. 111, 1119 (1991).Google Scholar
15. Perovic, D.D., Weatherly, G.C. and Houghton, D.C., Mat. Res. Soc. Symp. Proc., 160, 65 (1990).Google Scholar
16. Kvam, E.P., Eaglesham, D.J., Maher, D.M., Humphreys, C.J., Bean, J.C., Green, G.S. and Tanner, B.K., Mat. Res. Soc. Symp. Proc., 104, 623 (1988).Google Scholar
17. Higgs, V., Kightley, P., Goodhew, P. and Augustus, P., Appl. Phys. Lett., 52, 829 (1991).Google Scholar
18. Coteau, M.D. de, Wilshaw, P.R. and Falster, R., Solid State Phenomena, 19–20, 27 (1991).Google Scholar
19. Houghton, D.C., J. Appl. Phys., 20, 2136 (1991).Google Scholar
20.For example see: Sturm, J.C., Schwartz, P.V., Prinz, E.J. and Manoharan, H., J. Vac, Sci. Technol. B, 9, 2011 (1991).Google Scholar
21. Hull, R., Bean, J.C. and Buescher, C., J. Appl. Phys., 6, 5837 (1989).Google Scholar
22. Perovic, D.D. and Weatherly, G.C., Ultramicroscopy, 35, 271 (1991).Google Scholar
23. Kesan, V.P., May, P.G., LeGoues, F.K. and Iyer, S.S., J. Cryst. Growth, 111, 936 (1991).Google Scholar
24. Ashby, M.F. and Brown, L.M., Philos. Mag., 8, 1083 (1963).Google Scholar
25. Ashby, M.F. and Brown, L.M., Philos. Mag., 8, 1649 (1963).Google Scholar
26. Nodl, J.P., Rowell, N.L., Houghton, D.C., Wang, A. and Perovic, D.D., Appl. Phys. Lett. (in press).Google Scholar
27. Hoeven, A.J., Lenssinck, J.M., Dijkkamp, D., Loenen, E.J. van and Dieleman, J., Phys. Rev. Lett., 63, 1830 (1989).Google Scholar
28. Swartzentruber, B.S., Mo, Y.-W., Webb, M.B. and Lagally, M.G., J. Vac. Sci. Technol. A,7, 2901 (1989).Google Scholar
29.Such an argument has previously been used to explain step-driven, long-range ordering in GeSij/Si; see: Jesson, D.E., Pennycook, S.J., Baribeau, J.-M. and Houghton, D.C., Phys. Rev. Lett., 68, 2062 (1992).Google Scholar
30. Rode, D.L., Phys. Stat. Sol. (a), 32, 425 (1975).Google Scholar
31. Brown, L.M., Dryden, J.R., Perovic, V. and Purdy, G.R., Metall. Trans. A, 22, 1159 (1991).Google Scholar
32. Dryden, J.R., Brown, L.M. and Purdy, G.R., Scripta Metall. et Mater., 25, 2075 (1991).Google Scholar
33. Brown, L.M. and Woolhouse, G.R., Philos. Mag., 21, 329 (1970).Google Scholar
34. Kelly, A. and Macmillan, N.H., Strong Solids, 3rd ed. (Oxford University Press, Oxford, 1986), Chap. 1.Google Scholar
35. Weatherly, G.C., Philos. Mag., 17, 791 (1968).Google Scholar
36. Ashby, M.F. and Johnson, L., Philos. Mag., 20, 1009 (1969).Google Scholar
37. Glas, F., J. Appl. Phys., 70, 3556 (1991).Google Scholar
38. Shiflet, G.J. and Merwe, J.H. van der, J. Elect. Mater., 20, 785 (1991); Mat. Res. Soc. Symp. Proc., 238, 53 (1992).Google Scholar
39. Bacon, D.J. and Crocker, A.G., Philos. Mag., 12, 195 (1965).Google Scholar
40. Peierls, R.E., Proc. Phys. Soc., 52, 23 (1940); F.R.N. Nabarro, ibid., 52, 256 (1947).Google Scholar
41. Foreman, A.J., Jawson, M.A. and Wood, J.K., Proc. Phys. Soc. A, 64, 156 (1951).Google Scholar
42. Merwe, J.H. van der, J. Elect. Mater., 20, 793 (1991).Google Scholar
43. Celli, V., J. Phys. Chem. Sol., 19, 100 (1961).Google Scholar
44. Heggie, M. and Jones, R., Inst. Phys. Conf. Ser., 87, 367 (1987).Google Scholar
45. Nandedkar, A.S. and Narayan, J., Philos. Mag. A, 61, 873 (1990).Google Scholar
46.It is worth noting that one previous strain relaxation calculation involving 60* dislocations in Si assumed a value of a= 0.755 without proof; see: Nix, W.D., Metall. Trans. A, 20, 2217 (1989).Google Scholar
47. Willis, J.R., Jain, S.C. and Bullough, R., Philos. Mag. A, 62, 115 (1990); ibid, 64, 629 (1991).Google Scholar
48. Matthews, J.W., J. Vac. Sci. Technol., 12, 126 (1975).Google Scholar
49. Houghton, D.C., Perovic, D.D., Baribeau, J.-M. and Weatherly, G.C., J. Appl. Phys., 67, 1850 (1990).Google Scholar