Published online by Cambridge University Press: 10 February 2011
TiN films deposited by CVD utilizing TiCl4 and NH3 are widely used in ULSI processes. The residual chlorine in the film is one of the major issues of TiCl4 based chemistry [1–5]. We have examined the kinetics of TiN-CVD using TiCl4 and NH3 as precursors to determine method for controlling the residual chlorine concentration.
We analyzed the deposition rate profiles obtained from a simple tubular isothermal reactor. Deposition was performed over the temperature range from 300°C to 500°C and with varying initial concentrations of TiCl4 and NH3. We found that the deposition rate was independent of the TiCl4 concentration at higher concentrations. The deposition rate was proportional to the TiCl4 concentration in the low concentration range. This phenomenon can be well explained by a Langmuir-Hinshelwood type mechanism. Examination of the deposition rate dependence on the concentration of NH3 showed that both the maximum deposition rate at high TiCl4 concentrations and the first order kinetic rate constant in the lower TiCl4 concentration range were proportional to the NH3 concentration. These results indicate that the deposition was controlled by the Eley-Rideal mechanism. The residual chlorine concentration was found to be proportional to the surface coverage factor of adsorbed TiCl4. We conclude that the best way to obtain good quality TiN films can be obtained theoretically through these kinetic studies.