Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T04:26:57.709Z Has data issue: false hasContentIssue false

Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene

Published online by Cambridge University Press:  27 February 2015

Bansi D. Malhotra*
Affiliation:
Department of Biotechnology, Delhi Technological University, Delhi 110042, India Department of Science & Technology Centre on Biomolecular Electronics, CSIR-National Physical Laboratory Dr K.S.Krishnan Marg, New Delhi 110012, India
Saurabh Srivastava
Affiliation:
Department of Biotechnology, Delhi Technological University, Delhi 110042, India
Shine Augustine
Affiliation:
Department of Biotechnology, Delhi Technological University, Delhi 110042, India
*
*Corresponding Author:bansi.malhotra@gmail.com
Get access

Abstract

There is increased interest towards the application of carbon based nanomaterials to biosensors since these can be used to quickly detect presence of the toxins in food, agricultural and environmental systems. The accurate, faster and early detection of food toxins is presently very important for ensuring safety and shelf life of agricultural commodities resulting from food contamination. The carbon materials (CNTs) and recently discovered graphene have been predicted to be promising candidates in the development of electrochemical biosensor owing to their exceptionally large surface area and interesting electrochemical properties. We focus on some of the recent results obtained in our laboratories pertaining to the development of biosensors based on multi-walled carbon nanotubes and graphene for mycotoxin(aflatoxin ) detection.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kralj Cigić, I. and Prosen, H.: An overview of conventional and emerging analytical methods for the determination of mycotoxins. International journal of molecular sciences 10, 62 (2009).CrossRefGoogle ScholarPubMed
Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R. and Nehls, I.: Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied microbiology and biotechnology 86, 1595 (2010).CrossRefGoogle ScholarPubMed
Turner, N.W., Subrahmanyam, S. and Piletsky, S.A.: Analytical methods for determination of mycotoxins: a review. Analytica chimica acta 632, 168 (2009).CrossRefGoogle ScholarPubMed
Palchetti, I. and Mascini, M.: Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and bioanalytical chemistry 391, 455 (2008).CrossRefGoogle ScholarPubMed
Ligler, F.S., Taitt, C.R., Shriver-Lake, L.C., Sapsford, K.E., Shubin, Y. and Golden, J.P.: Array biosensor for detection of toxins. Analytical and bioanalytical chemistry 377, 469 (2003).CrossRefGoogle ScholarPubMed
Rasooly, A. and Herold, K.E.: Biosensors for the analysis of food-and waterborne pathogens and their toxins. Journal of AOAC International 89, 873 (2006).Google ScholarPubMed
Scott, P., Lawrence, J. and Van Walbeek, W.: Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Applied Microbiology 20, 839 (1970).Google ScholarPubMed
Frisvad, J.C. and Thrane, U.: Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection). Journal of Chromatography A 404, 195 (1987).CrossRefGoogle Scholar
Shephard, G., Sydenham, E., Thiel, P. and Gelderblom, W.: Quantitative determination of fumonisins B1 and B2 by high-performance liquid chromatography with fluorescence detection. Journal of Liquid Chromatography 13, 2077 (1990).CrossRefGoogle Scholar
Berthiller, F., Schuhmacher, R., Buttinger, G. and Krska, R.: Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1062, 209 (2005).CrossRefGoogle ScholarPubMed
Pestka, J.: Enhanced surveillance of foodborne mycotoxins by immunochemical assay. Journal-Association of Official Analytical Chemists 71, 1075 (1987).Google Scholar
Molinelli, A., Grossalber, K. and Krska, R.: A rapid lateral flow test for the determination of total type B fumonisins in maize. Analytical and bioanalytical chemistry 395, 1309 (2009).CrossRefGoogle ScholarPubMed
Kos, G., Lohninger, H. and Krska, R.: Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of< i> Fusarium</i> fungi on maize. Vibrational Spectroscopy 29, 115 (2002).CrossRefGoogle Scholar
van der Gaag, B., Spath, S., Dietrich, H., Stigter, E., Boonzaaijer, G., van Osenbruggen, T. and Koopal, K.: Biosensors and multiple mycotoxin analysis. Food Control 14, 251 (2003).CrossRefGoogle Scholar
Pohanka, M., Jun, D. and Kuca, K.: Mycotoxin assays using biosensor technology: A review. Drug and chemical toxicology 30, 253 (2007).CrossRefGoogle ScholarPubMed
Gerard, M., Chaubey, A. and Malhotra, B.: Application of conducting polymers to biosensors. Biosensors and Bioelectronics 17, 345 (2002).CrossRefGoogle ScholarPubMed
Pandey, P., Datta, M. and Malhotra, B.: Prospects of nanomaterials in biosensors. Analytical Letters 41, 159 (2008).CrossRefGoogle Scholar
Solanki, P.R., Kaushik, A., Agrawal, V.V. and Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Materials 3, 17 (2011).CrossRefGoogle Scholar
Ansari, A.A., Kaushik, A., Solanki, P. and Malhotra, B.: Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications 10, 1246 (2008).CrossRefGoogle Scholar
Arya, S.K., Solanki, P.R., Datta, M. and Malhotra, B.D.: Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors and Bioelectronics 24, 2810 (2009).CrossRefGoogle ScholarPubMed
Ajayan, P.M. and Zhou, O.Z.: Applications of carbon nanotubes, in Carbon nanotubes (Springer2001), pp. 391.CrossRefGoogle Scholar
Wang, J.: Carbon nanotube based electrochemical biosensors: A review. Electroanalysis 17, 7 (2005).CrossRefGoogle Scholar
Kavan, L. and Dunsch, L.: Electrochemistry of carbon nanotubes, in Carbon Nanotubes (Springer2008), pp. 567.CrossRefGoogle Scholar
Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chemistry-A European Journal 15, 4970 (2009).CrossRefGoogle ScholarPubMed
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nature materials 6, 183 (2007).CrossRefGoogle ScholarPubMed
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A. and Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027 (2010).CrossRefGoogle Scholar
Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A. and Röhrl, J.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature materials 8, 203 (2009).CrossRefGoogle ScholarPubMed
Li, X., Cai, W., Colombo, L. and Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters 9, 4268 (2009).CrossRefGoogle ScholarPubMed
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I. and Tutuc, E.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).CrossRefGoogle ScholarPubMed
Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R. and Yu, Z.: Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition 15, 53 (2009).CrossRefGoogle Scholar
Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007).CrossRefGoogle ScholarPubMed
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I., Holland, B., Byrne, M. and Gun'Ko, Y.K.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology 3, 563 (2008).CrossRefGoogle ScholarPubMed
Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S.: The chemistry of graphene oxide. Chemical Society Reviews 39, 228 (2010).CrossRefGoogle ScholarPubMed
Pumera, M.: Graphene in biosensing. Materials today 14, 308 (2011).CrossRefGoogle Scholar
Chen, J., Liu, D., Li, S. and Yao, D.: Development of an amperometric enzyme electrode biosensor for sterigmatocystin detection. Enzyme and Microbial Technology 47, 119 (2010).CrossRefGoogle Scholar
Li, S.c., Chen, J.h., Cao, H., Yao, D.s. and Liu, D.l.: Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22, 43 (2011).CrossRefGoogle Scholar
Yao, D.-S., Cao, H., Wen, S., Liu, D.-l., Bai, Y. and Zheng, W.-j.: A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ). Bioelectrochemistry 68, 126 (2006).CrossRefGoogle Scholar
Kaushik, A., Solanki, P.R., Pandey, M., Kaneto, K., Ahmad, S. and Malhotra, B.D.: Carbon nanotubes—chitosan nanobiocomposite for immunosensor. Thin Solid Films 519, 1160 (2010).CrossRefGoogle Scholar
Dhand, C., Arya, S.K., Datta, M. and Malhotra, B.: Polyaniline–carbon nanotube composite film for cholesterol biosensor. Analytical biochemistry 383, 194 (2008).CrossRefGoogle ScholarPubMed
Singh, C., Srivastava, S., Ali, M.A., Gupta, T.K., Sumana, G., Srivastava, A., Mathur, R. and Malhotra, B.D.: Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical (2013).CrossRefGoogle Scholar
Wu, S., Duan, N., Ma, X., Xia, Y., Wang, H., Wang, Z. and Zhang, Q.: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Analytical chemistry 84, 6263 (2012).CrossRefGoogle ScholarPubMed
Sheng, L., Ren, J., Miao, Y., Wang, J. and Wang, E.: PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosensors and Bioelectronics 26, 3494 (2011).CrossRefGoogle ScholarPubMed
Norouzi, P., Larijani, B. and Ganjali, M.: Ochratoxin A Sensor Based on Nanocomposite Hybrid Film of Ionic Liquid-Graphene Nano-Sheets Using Coulometric FFT Cyclic Voltammetry. Int. J. Electrochem. Sci 7, 7313 (2012).Google Scholar
Srivastava, S., Kumar, V., Ali, M.A., Solanki, P.R., Srivastava, A., Sumana, G., Saxena, P.S., Joshi, A.G. and Malhotra, B.: Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5, 3043 (2013).CrossRefGoogle ScholarPubMed
Srivastava, S., Ali, M.A., Umrao, S., Parashar, U.K., Srivastava, A., Sumana, G., Malhotra, B., Pandey, S.S. and Hayase, S.: Graphene oxide-based biosensor for food toxin detection. Applied biochemistry and biotechnology 174, 960 (2014).CrossRefGoogle ScholarPubMed