No CrossRef data available.
Published online by Cambridge University Press: 14 January 2013
Many advances in nanomaterials synthesis have been recorded during the last 30 years. Bacterial cellulose (BC) produced by bacteria belonging to the genera Acetobacter, Rhizobium, Agrobacterium, and Sarcina is acquiring major importance as one of many eco-friendly materials with great potential in the biomedical field. The shape of BC bulk is sensitive to the container shape and incubation conditions such as agitation, carbon source, rate of oxygenation, electromagnetic radiation, temperature, and pH. The challenge is to control the dimension and the final shape of biosynthesized cellulose, by the optimization of culture conditions. The production of 3D structures based on BC is important for many industrial and biomedical applications such as paper and textile industries, biological implants, burn dressing material, and scaffolds for tissue regeneration. In our work, wild strains of Acetobacter spp. were isolated from homemade vinegar then purified and used for cellulose production. Four media of different initial viscosity were used. Cultures were performed under static conditions at 29°C, in darkness. The dimensions and texture of obtained bacterial cellulose nanofibers were studied using scanning electron microscopy (SEM). X-ray diffraction (XRD) showed that the biosynthesized material has a cellulose I crystalline phase characterized by three crystal planes. fourrier transform infrared spectroscopy (FTIR) data confirmed the chemical nature of the fibers. Thermo-gravimetric analysis (TGA) showed that BC preserves a relatively superior non-degradable fraction compared to microcrystalline cellulose.