Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:34:00.169Z Has data issue: false hasContentIssue false

Boron Diffusion in Si and Si1−xGex

Published online by Cambridge University Press:  15 February 2011

P. Kuo
Affiliation:
Solid-State Electronics Laboratory, Stanford University, Stanford, California 94305
J. L. Hoyt
Affiliation:
Solid-State Electronics Laboratory, Stanford University, Stanford, California 94305
J. F. Gibbons
Affiliation:
Solid-State Electronics Laboratory, Stanford University, Stanford, California 94305
J. E. Turner
Affiliation:
Hewlett-Packard Company, Palo Alto, California 94303
D. Lefforge
Affiliation:
Hewlett-Packard Company, Palo Alto, California 94303
Get access

Abstract

Boron diffusion in in-situ doped Si and strained Si1−xGex (x < 0.20) epitaxial layers, subjected to inert-ambient furnace annealing, was investigated as a function of temperature (T = 750 °C - 850 °C). Boron diffusivity parameters were extracted from SUPREM IV, a process simulation program. We observed slower B diffusion in strained Si1−xGex relative to that in Si for B concentration levels ranging from 2×1017 to 3×1019 cm−3. Using relaxed graded Si1−xGex as “substrates”, we also characterized B diffusion in relaxed Si1−xGex (x < 0.60) at T = 800 °C. We propose a reaction of mobile B atoms pairing with Ge atoms to model the slower B diffusion in both fully strained and relaxed Si1−xGex.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arienzo, M., Comfort, J., Crabbe, E.F., Harame, D.L., Iyer, S.S., Kesan, V.P., Meyerson, B.S., Patton, G.L., Stork, J.M.C., Microelectron. Engineering 19, 519 (1992).Google Scholar
2. Kuo, P., Hoyt, J.L., Gibbons, J.F., Turner, J.E., Jacowitz, R.D., Kamins, T.I., Appl. Phys. Lett. 62, 612 (1993).Google Scholar
3. Moriya, N., Feldman, L.C., Luftman, H.S., King, C.A., Bevk, J., Freer, B., Phys. Rev. Lett. 71, 883 (1993).Google Scholar
4. Loechelt, G.H., Tam, G., Steele, J.W., Knoch, L.K., Klein, K.M., Watanabe, J.K., Christiansen, J.W., J. Appl. Phys. 74, 5520 (1993).Google Scholar
5. Kuo, P., Hoyt, J.L., Gibbons, J.F., Turner, J.E., Lefforge, D., Appl. Phys. Lett. 66, 580 (1995).Google Scholar
6. Gibbons, J.F., Gronet, C.M., Williams, K.E., Appl. Phys. Lett. 47, 721 (1985).Google Scholar
7. King, C.A., Hoyt, J.L., Gibbons, J.F., IEEE Trans. Electron Devices 36, 2093 (1989).Google Scholar
8. Hoyt, J.L., Noble, D.B., Ghani, T., King, C.A., Gibbons, J.F., Scott, M.P., Laderman, S.S., Nauka, K., Turner, J.E., Rosner, S.J., Kamins, T.I., in Proceedings of the Second International Conference on Electronic Materials, 1990, edited by Chang, R.P.H., Sugano, T., Nguyen, V.T. (Materials Research Society, Pittsburgh, PA, 1991), vol. ICEM-90, p. 551.Google Scholar
9. Law, M.E., Rafferty, C.S., Dutton, R.W., SUPREM IV User's Manual, (Stanford University, Stanford, CA, December 1988).Google Scholar
10. People, R., Phys. Rev. B 32, 1405 (1985).Google Scholar
11. Welser, J., Hoyt, J.L., Gibbons, H.F., Jpn. J. Appl. 33, 2419 (1994).Google Scholar
12. Fahey, P.M., Griffin, P.B., Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar