Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:03:38.918Z Has data issue: false hasContentIssue false

Bromine Doped Single-walled Carbon Nanotubes

Published online by Cambridge University Press:  15 March 2011

Bingbing Liu
Affiliation:
Department of Experimental Physics, Umeå University, S-901 87 Umeå, SWEDEN
Jan Carlsten
Affiliation:
Department of Experimental Physics, Umeå University, S-901 87 Umeå, SWEDEN
Bertil Sundqvist
Affiliation:
Department of Experimental Physics, Umeå University, S-901 87 Umeå, SWEDEN
Get access

Abstract

Raman spectra for three SWNT samples doped with Br2 were studied using different excitation energies, 2.41 eV and 1.58 eV. One sample was also studied under high pressure up to 2 GPa. The vibrations in the low frequency range behave similarly for all samples. With an excitation energy of 1.58 eV, additional peaks at ca 240 cm−1 and 209 cm−1 are observed. With increasing pressure, the peak at 209 cm−1 gradually softens by 2∼3 cm−1 and becomes very weak at 1.7 GPa, while a new broader peak at ca 250 cm−1 remains constant up to 2 GPa. A number of high intensity overtone modes are observed under high pressure. These results indicate that the vibrations are attributed to bromine, not to the breathing modes of SWNTs, and that bromine resides in the bundles, possibly also inside tubes as a form of polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grigorian, L., Williams, K.A., Fang, S., Sumanasekera, G.U., Loper, A.L., Dickey, E.C., Pennycook, S. J., Eklund, P.C., Phys.Rev. Lett., 80, 5560 (1998).Google Scholar
2. Fan, X., Dickey, E.C., Eklund, P.C., Williams, K.A., Grigorian, L., Buczko, R., Pantelides, S.T., Pennycook, S.J., Phys.Rev. Lett., 84, 4621 (2000);Google Scholar
3. Rao, A.M., Eklund, P.C., Bandow, S., Thess, A., Smalley, R. E., Nature, 388, 257 (1997).Google Scholar
4. Kataura, H., Kumazawa, Y., Kojima, N., Maniwa, Y., Umezu, I., Masubuchi, S., Kazama, S., Ohtsuka, Y., Suzuki, S., Achiba, Y., Mol. Cryst. and Liq. Cryst., 340, 757 (2000).Google Scholar
5. Venkateswaran, U.D., Rao, A.M., Richter, E., Menon, M., Rinzler, A., Smalley, R. E., Eklund, P. C., Phys. Rev. B, 59, 10928 (1999).Google Scholar
6. Liu, B.B., Wågberg, T., Olsson, E., Yang, R.S., Li, H.D., Zhang, S.L., Yang, H.B., Zou, G. T., Sundqvist, B., Chem. Phys. Lett., 320, 365 (2000).Google Scholar
7. Kazaoui, S., Minami, N., Yamawaki, H., Aoki, K., Kataura, H., Achiba, Y., Phys. Rev. B, 62, 1643 (2000).Google Scholar
8. Schnittke, A., Stegemann, H., Fullbier, H., Gabrusenoks, J., Raman, J. Spectroscopy 22, 627 (1991).Google Scholar
9. Kalina, D. W., Lyding, J. W., Ratajack, M. T., Kannewurf, C. R., Marks, T. J., J. Am. Chem. Soc, 102, 7854 (1980).Google Scholar
10. Brown, S.D.M., Corio, P., Marucci, A., Dresselhaus, M.S., Pimenta, M.A., Kneipp, K., Phys. Rev. B, 61, R5167 (2000).Google Scholar
11. Venkateswaran, U.D., Katakowski, M.E., Brandsen, E.A., Harutyunyan, A., and Eklund, P.C. (unpublished).Google Scholar