Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T05:19:09.025Z Has data issue: false hasContentIssue false

Carbon Nanotube Assisted Electrical Treeing for Vascular Network Synthesis

Published online by Cambridge University Press:  31 January 2011

Kristopher D. Behler
Affiliation:
kristopher.behler@arl.army.milkbehler@gmail.com, U. S. Army Research Laboratory, Composites and Hybrid Materials Branch, Aberdeen Proving Grounds, Maryland, United States
Eric D. Wetzel
Affiliation:
eric.wetzel@us.army.mil, U. S. Army Research Laboratory, Composites and Hybrid Materials Branch, Aberdeen Proving Grounds, Maryland, United States
Get access

Abstract

Electrical treeing (ET) is a stepwise dielectric breakdown process that generates a branched, hollow network of tubules in the dielectric between the electrode and ground. In this study, the controlled growth of electrical trees (ETs) in epoxies is demonstrated as a technique for fabricating synthetic vascular systems in engineering materials. A number of experimental conditions are explored, including AC versus DC voltage and geometric arrangement of the electrode and ground. AC growth tends to induce highly branched, “bush-like” trees while DC growth tends to produce lower-order branched structures. In addition, treating electrode surfaces with multi-walled carbon nanotubes (MWCNTs) is shown to promote ET initiation, most likely due to enhancements in the local electric field intensity. The utility of these structures for vascular applications is demonstrated by filling the channels with dyed liquids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Champion, J. V. and Dodd, S. J., J. Phys. D: Appl. Phys. 28, 398 (1995).Google Scholar
2. Champion, J. V., Dodd, S. J. and Stevens, G. C., J. Phys. D: Appl. Phys. 27, 604 (1994).Google Scholar
3. Dodd, S. J., Dissado, L. A., Champion, J. V. and Alison, J. M., Phys. Rev. B. 52, (1995).Google Scholar
4. Laurent, C. and Mayoux, C., J. Phys. D: Appl. Phys. 14, 1903 (1981).Google Scholar
5. Lucas, N., Hinze, A., Klages, C. P. and Buttgenbach, S., J. Phys. D: Appl. Phys. 41, 194012 (2008).Google Scholar
6. Bond, I. P., Trask, R. S. and Williams, H. R., MRS Bull. 33, 770 (2008).Google Scholar
7. Trask, R. S. and Bond, I. P., Smart Mater. Struct. 15, 704 (2006).Google Scholar
8. Therriault, D., Shepherd, R. F., White, S. R. and Lewis, J. A., Adv. Mater. 17, 395 (2005).Google Scholar
9. Therriault, D., White, S. R. and Lewis, J. A., Nat. Mater. 2, 265 (2003).Google Scholar
10. Toohey, K. S., Hansen, C. J., Lewis, J. A., White, S. R. and Sottos, N. R., Adv. Funct. Mater. 19, 1399 (2009).Google Scholar
11. Heer, W. A. de, Châtelain, A. and Ugarte, D., Science 270, 1179 (1995).Google Scholar
12. Talapatra, S., Kar, S., Pal, S. K., Vajtai, R., Ci, L., Victor, P., Shaijumon, M. M., Kaur, S., Nalamasu, O. and Ajayan, P. M., Nature Nanotechnol. 1, 112 (2006).Google Scholar
13. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., Rossi, D. De, Rinzler, A. G., Jaschinski, O., Roth, S. and Kertesz, M., Science 284, 1340 (1999).Google Scholar
14. Behler, K., Havel, M., Mattia, D. and Gogotsi, Y., Mater. Res. Soc. Symp. Proc. 1057, II20.26 (2008).Google Scholar
15. Vanlandingham, M. R., Eduljee, R. F. and Gillespie, J. W., J. Appl. Polym. Sci. 71, 699 (1999).Google Scholar
16. Sarathi, R., Mater. Lett. 32, 351 (1997).Google Scholar