Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T12:48:18.956Z Has data issue: false hasContentIssue false

Carrier Confinement Effects in Epitaxial Silicon Quantum Wells Prepared by MOCVD

Published online by Cambridge University Press:  28 February 2011

H. Paul Maruska
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730
R. Sudharsanan
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01730
Eric Bretschneider
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611
Albert Davydov
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611
J.E. Yu
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611
Balu Pathangey
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611
K.S. Jones
Affiliation:
Materials Science Department, University of Florida, Gainesville, FL 32611
Timothy J. Anderson
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611
Get access

Abstract

Silicon multiquantum wells ranging in width from 3 to 15 nm were deposited on closely lattice-matched ZnS barriers. MOCVD was used to deposit the ZnS films using diethyl zinc and hydrogen sulfide as the precursors; disilane was used to deposit silicon layers at low temperatures. Single and multiple silicon nano-layers were observed by transmission electron microscopy and secondary ion mass spectrometry. Photoluminesence studies revealed emissions peaks which were blue-shifted with respect to the edge emission from bulk silicon substrates. The observation of emission from silicon nanostructures shifted to wavelengths as short as the 800-850 nm range is consistent with the effects of quantum confinement in silicon nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Macauley, J. M. et al. , in Light Emission from Silicon, edited by Iyer, S. S., Canham, L. T., and Collins, R. P. (Materials Res. Soc. Pitsburgh, PA 1992), 256, p. 46.Google Scholar
3 Kalkhoran, N. M., Namavar, F., and Paul Maruska, H., in Light Emission from Silicon. edited by Iyer, S. S., Canham, L. T., and Collins, R. P., (Materials Res. Soc., Pittsburgh, PA 1992), Vol. 256, p.89.Google Scholar
4 Zhang, D. et al. , in Light Emission from Silicon, edited by Iyer, S. S., Canham, L. T., and Collins, R. P., (Materials Res. Soc, Pittsburgh, PA 1992) Vol. 256, p.35.Google Scholar
5 Namavar, Fereydoon, Paul Maruska, H., and Kalkhoran, Nader M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
6 Nishida, A., Nakagawa, K., Kakibayashi, H., Shimada, T., Jpn. J. Appl. Phys. 31, L1219 (1992).Google Scholar
7 Holonyak, N. Jr., Kolbas, R. M., Dupuis, R. D., Dapkus, P. D., IEEE J. Quantum Electronics, 16, 170 (1980).Google Scholar
8 Gnutzmann, U. and Clausecker, K., Appl. Phys., 3, 9 (1974).Google Scholar
9 Kasper, E. and Schaffler, F. in Strained-Layer Superlattices: Materials Science and Technology, Vol 33 of Semiconductors and Semimetals. Pearsall, T. P., editor (Academic Press, New York, 1990). Chapter 4.Google Scholar
10 Roy, S. K. et al. , J. Electron. Matl. 17, 211 (1988).Google Scholar
11 Rocheleau, R. E. et al. , Appl. Phys. Lett., 51 133 (1987).Google Scholar
12 Engstrom, J. R., Xia, L. Q., Furjanic, M. J., Hansen, D. A., Appl. Phys. Lett., 63, 1821 (1993).Google Scholar
13 Haynes, J. R., Lax, M., and Flood, W. F., J. Phys. Chem. Solids, 8, 392 (1959).Google Scholar
14 Welch, D. F., Hicks, G. W., Eastman, L. F., J. Appl. Phys., 55, 3176(1984).Google Scholar
15 Liboff, Richard L., Introductory Quantum Mechanics, Addison-Wesley, Publ. (1992).Google Scholar
16 Mead, C. A., Solid State Electronics, 9, 1023 (1966).Google Scholar
17 Shur, Michael, Physics of Semiconductor Devices, Prentice-Hall, Englewood Cliffs, publisher, 1990.Google Scholar
18 Chen, K., Huang, X., Xu, J., Feng, D., Appl. Phys. Lett., 61 2069 (1992).Google Scholar
19 Zhang, S. and Kobayashi, N., Appl. Phys. Lett., 60, 883 (1992).Google Scholar