Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T08:13:39.159Z Has data issue: false hasContentIssue false

Carrier Dynamics in Porous Silicon: from the Femtosecond to the Second

Published online by Cambridge University Press:  28 February 2011

Philippe M. Fauchet*
Affiliation:
Department of Electrical Engineering, Laboratory for Laser Energetics, andThe Institute of Optics, University of Rochester, Rochester NY 14627, USA
Get access

Abstract

The luminescence in red-emitting porous silicon exhibits a distribution of lifetimes in the μsec time domain at room temperature and in the msec time domain at cryogenic temperatures. However, the luminescence and carrier dynamics in porous silicon display transients that vary from much less than 1 psec to ∼ 1 sec, depending on the measurement conditions and sample preparation. We have investigated the carrier dynamics in porous silicon by two time-resolved techniques. The blue photoluminescence of oxidized porous silicon has been measured with 100 ps time resolution as a function of the oxidation method, emission wavelength, excitation intensity and measurement temperature. The blue luminescence has a distinct origin from the well-studied red luminescence and we attribute it to defects in the oxide. Femtosecond photoinduced absorption measurements have been performed on thin red-emitting porous silicon films. The wavelength and intensity dependence of the recovery are interpreted in terms of trapping and of Auger recombination at high excitation intensity. Our results also show conclusively that red-emitting porous silicon is not a direct gap semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2 Fauchet, P.M. et al, in Advanced Photonics Materials for Information Technology, Etemad, S. editor (SPIE, Bellingham, WA), SPIE Proc. 2144, 34 (1994); P.M. Fauchet et al, in Semiconductor Silicon/94, H.R. Huff, W. Bergholz and K. Sumino editors, (Electrochemical Society, Pennington, NJ), p 499 (1994).Google Scholar
3 Fauchet, P.M., “Light-Emitting Porous Silicon: A Status Report,” in Porous Silicon, Feng, Z.C. and Tsu, R. editors (World Scientific, Singapore),p 449 (1994).Google Scholar
4 Gong, T., Nighan, W.L. Jr. and Fauchet, P.M., Appl. Phys. Lett. 57, 2713 (1990).Google Scholar
5 Young, J.F., Gong, T., Fauchet, P.M. and Kelly, P.J., Phys. Rev. B50, 2208 (1994).Google Scholar
6 Kostoulas, Y., Waxer, L., Walmsley, I.A., Wicks, G.W. and Fauchet, P.M., “Femtosecond Carrier Dynamics in Low-Temperature-Grown Indium Phosphide,” submitted for publication.Google Scholar
7 Fauchet, P.M., Hulin, D., Migus, A., Antonetti, A., Kolodzey, J. and Wagner, S., Phys. Rev. Lett. 57, 2438 (1986).Google Scholar
8 Fauchet, P.M., Hulin, D., Vanderhaghen, R., Mourchid, A. and Nighan, W.L. Jr., J. Non-Cryst. Solids 141, 76 (1992).Google Scholar
9 Tsybeskov, L., Peng, C., Duttagupta, S. P., Ettedgui, E., Gao, Y., Fauchet, P. M. and Carver, G. E., Mat. Res. Soc. Symp. Proc. 298, 307 (1993).Google Scholar
10 Peng, C., Tsybeskov, L. and Fauchet, P. M., Mat. Res. Soc. Symp. Proc. 283, 121 (1993).Google Scholar
11 Tsybeskov, L., Vandyshev, Ju. V. and Fauchet, P.M., Phys. Rev. B49, 7821 (1994).Google Scholar
12 Tsang, C. and Street, R. A., Phys. Rev. B19, 3027 (1979).Google Scholar
13 Stathis, J. H. and Kastner, M. A., Phys. Rev. B35, 2972 (1987).Google Scholar
14 Anedda, A., Bongiovanni, G., Cannas, M., Congiu, F., Mura, A. and Martin, M., J. Appl. Phys. 74, 6993 (1993).Google Scholar
15 Tsybeskov, L. and Fauchet, P.M., Appl. Phys. Lett. 64, 1983 (1994).Google Scholar
16 for example, Matsumoto, T., Futagi, T., Mimura, H. and Kanemitsu, Y., Mat. Res. Soc. Symp. Proc. 283, 149 (1993).Google Scholar
17 Tamura, H. et al, Appl. Phys. Lett. 65, 1537 (1994); A.J. Kontkiewicz et al, Appl. Phys. Lett. 65, 1436 (1994).Google Scholar
18 Hummel, R.E., Fauchet, P.M., Ludwig, M.H., Vandyshev, Ju.V., Chang, S.-S. and Tsybeskov, L., submitted for publication.Google Scholar
19 Fauchet, P.M., Kostoulas, Y., Vandyshev, Ju. V. and Petrova-Koch, V., “Ultrafast Electronic Processes in Porous Silicon,” in Ultrafast Phenomena IX (Springer-Verlag, Berlin), in press (1995).Google Scholar
20 von Behren, J., Ucer, K.B., Tsybeskov, L., Vandyshev, Ju. V. and Fauchet, P.M., “Properties of Ultrathin Films of Porous Silicon,” to appear in J. Vac. Sci. Technol.Google Scholar
21 von Behren, J., Tsybeskov, L. and Fauchet, P.M., “Preparation and Characterization of Ultrathin Porous Silicon Films,” submitted for publication.Google Scholar
22 Oudar, J.L., Hulin, D., Migus, A., Antonetti, A. and Alexandre, F., Phys. Rev. Lett. 55, 2074 (1985).Google Scholar
23 Downer, M. and Shank, C.V., Phys. Rev. Lett. 56, 761 (1986).Google Scholar
24 Fauchet, P.M. and Nighan, W.L. Jr., Appl. Phys. Lett. 48, 721 (1986).Google Scholar
25 Mourchid, A., Hulin, D., Tanguy, C., Vanderhaghen, R., Nighan, W.L. Jr., Gzara, K. and Fauchet, P.M., Solid State Commun. 74, 1197 (1990).Google Scholar
26 Hybertsen, M.S., Phys. Rev. Lett. 72, 1514 (1994).Google Scholar
27 Calcott, P.D.J., Nash, K.J., Canham, L.T., Kane, M.J. and Brumhead, D., J. Luminesc. 57, 257 (1993).Google Scholar