Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:07:50.250Z Has data issue: false hasContentIssue false

Chemical Synthesis and Properties of Layered Co1-yNiyO2-δOxides (0≤y≤1)

Published online by Cambridge University Press:  18 March 2011

A. Manthiram
Affiliation:
Texas Materials Institute, ETC 9.104, University of Texas at Austin, Austin, TX 78712
R. V. Chebiam
Affiliation:
Texas Materials Institute, ETC 9.104, University of Texas at Austin, Austin, TX 78712
F. Prado
Affiliation:
Texas Materials Institute, ETC 9.104, University of Texas at Austin, Austin, TX 78712
Get access

Abstract

Layered Co1-yNiyO2-δ oxides with 0≤y≤1 have been synthesized by chemically extracting lithium from LiNi1-yCoyO2 with NO2PF6 at ambient temperature. The samples have been characterized by X-ray diffraction, wet-chemical analyses, infrared spectroscopy, and magnetic susceptibility measurements. While NiO2-δ retains the initial O3 (CdCl2 structure) layer structure of LiNiO2, CoO2-δ consists of a mixture of P3 and O1 (CdI2 structure) phases that are formed by a sliding of the oxide ions in the initial O3 structure. CoO2-δ and NiO2-δ have oxygen contents of, respectively, 1.67 and 1.95 and the oxygen content increases with increasing Ni content, y, in Co1-yNiyO2-δ. While CoO2-δ exhibits metallic conductivity as revealed by theabsence of absorption bands in the infrared spectrum, NiO2-δ exhibits semiconducting behavior due to a completely filled t2g band. Magnetic data reveal a transition from antiferromagnetic to ferromagnetic correlations as the Ni content in Co1-yNiyO2-δ increases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zaanen, J., Zawatzky, G. A., and Allen, J. W., Phys. Rev. Lett., 55, 418 (1985).Google Scholar
2. Bednorz, J. G. and Muller, K. A., Z. Phys., B 64, 189 (1986).Google Scholar
3. Helmolt, R. Von, Wecker, J., Holzapfelh, B., Schultz, L., and Samwer, K., Phys. Rev. Lett., 71, 2331 (1993).Google Scholar
4. Torrance, J. B., Lacorre, P., Asavaroengchai, C., and Metzger, R. M., J. Solid State Chem., 90, 168 (1991).Google Scholar
5. Torrance, J. B., Lacorre, P., Asavaroengchai, C., and Metzger, R. M., Physica C., 182, 351 (1991).Google Scholar
6. Torrance, J. B., Lacorre, P., Nazzal, A. I., Ansaldo, E. J., and Niedermayer, Ch., Phys. Rev., B 45, 8209 (1992).Google Scholar
7. Linden, D., Handbook of Batteries, ed. Linden, D. (McGraw-Hill, 1995) p. 14.1.Google Scholar
8. Ohzuku, T., Ueda, A., and Nagayama, M., J. Electrochem. Soc., 140, 1862 (1993).Google Scholar
9. Amatucci, G. G., Tarascon, J. M., and Klein, L. C., J. Electrochem. Soc., 143, 1114 (1996).Google Scholar
10. Tarascon, J. M., Vaughan, G., Chabre, Y., Seguin, L., Anne, M., Strobel, P., and Amatucci, G., J. Solid State Chem., 147, 410 (1999).Google Scholar
11. Croguennec, L., Pouillerie, C., and Delmas, C., J. Electrochem. Soc., 147, 1314 (2000).Google Scholar
12. Wizansky, A. R., Rauch, P. E., and DiSalvo, F. J., J. Solid State Chem., 81, 203(1989).Google Scholar
13. Armstrong, T., Prado, F., Xia, Y., and Manthiram, A., J. Electrochem. Soc., 147, 435 (2000).Google Scholar
14. Manthiram, A., Swinnea, J. S., Sui, Z. T., Steinfink, H., andGoodenough, J. B., J. Amer. Chem. Soc., 109, 6667 (1987).Google Scholar
15. Menetrier, M., Saadoune, I., Levasseur, S., and Delmas, C., J. Mater. Chem., 9, 1135 (1999).Google Scholar