Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:51:28.282Z Has data issue: false hasContentIssue false

A Cluster Calculation of B and P Impurities in Amorphous Silicon

Published online by Cambridge University Press:  26 February 2011

L. Enrique Sansores
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70–360, 04510 México D. F., México.
R.M. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70–360, 04510 México D. F., México.
J.A. Cogordan
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70–360, 04510 México D. F., México.
A.A. Valladares
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70–360, 04510 México D. F., México.
Get access

Abstract

The local density of states and charge density contours of clusters of the type ISi20H28, where I can be Si, B or P, was calculated using the well-known pseudopotential SCF Hartree-Fock Method (and the HONDO Program). It is found that the covalent nature of the bonding in pure silicon gets altered and gives rise to an ionic component when B and P are substituted in the center of the cluster. Also, the local density of states in the neighborhood of a Si atom, nearest neighbor to the center of the cluster, show a splitting of the p-states at the top of the valence band in pure silicon when B is substituted, and a new p-state appears in the band gap when P is sustituted. These results are analyzed in the light of the local changes and its relevance to the solid state properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Spear, W.E. and Le Comber, P.G., Solid State Commun. 17 (1975) 9.Google Scholar
[2] Stutzmann, M., Materials Issues in Amorphous-Semiconductor Technology, Materials Research Soc. Vol 70 (1986) 203.Google Scholar
[3] Street, R.A. and Biegelsen, D.K., The Physics of Hydrogenated Amorphous Silicon II, Topics in Applied Physics, Vol 56 (1984) 195.Google Scholar
[4] Jackson, W.B. and Amer, N.M., Phys. Rev. B 25 (1982) 5559.Google Scholar
[5] Amer, N.M., Semiconductors and Semimetals, Vol21B (1984) 83 Google Scholar
[6] Vanecek, M., Ko ka, J., Stuchlík, J., Kozisek, Z., Stika, O. and Triska, A., Solar Energy Materials 8 (1983) 411.Google Scholar
[7] Han, Ru-Qi, Ngai, K.L. and Ruvalds, J. Materials Issues in Amorphous-Semiconductor Technology, Materials Research Soc. Vol 70 (1986) 161.Google Scholar
[8] Michelson, C.E., Gelatos, A.V. and Cohen, J.D., Appl. Phys. Lett. 47 (1985) 412.Google Scholar
[9] Tagüeña-Martinez, J., Barrio, R.A., Sansores, L.E., Les, A. and Ortega-Blake, I., J. Non-Crystalline Solids 111 (1989) 178.Google Scholar
[10] Barthelat, J.C., Durand, Ph. and Serafini, A., Molo Phys. 33 (1977) 159.Google Scholar
[11] Dupuis, M., Rys, J. and King, H.F., Quantum Chemestry Programe Exchange 11 (1977) 338;Google Scholar
Daudey, J.P., Pseudopotential Adaptation, Université Paul Sabatier, unpublished.Google Scholar