Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T10:41:26.206Z Has data issue: false hasContentIssue false

Complex Intermetallic Compounds: Defects, Disordering, Details

Published online by Cambridge University Press:  26 February 2011

W. Sprengel
Affiliation:
Institute of Theoretical and Applied Physics, Stuttgart University, 70569 Stuttgart, Germany.
F. Baier
Affiliation:
Institute of Theoretical and Applied Physics, Stuttgart University, 70569 Stuttgart, Germany. Physical Metallurgy, Technical University Darmstadt, 64287 Darmstadt, Germany.
K. Sato
Affiliation:
Institute of Theoretical and Applied Physics, Stuttgart University, 70569 Stuttgart, Germany. National Institute of Advanced Industrial Science and Technology, Tsukuba 305–8565, Japan.
X. Y. Zhang
Affiliation:
Institute of Theoretical and Applied Physics, Stuttgart University, 70569 Stuttgart, Germany. Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao, P. R. China.
H.-E. Schaefer
Affiliation:
Institute of Theoretical and Applied Physics, Stuttgart University, 70569 Stuttgart, Germany.
Get access

Abstract

A short overview will be given on the thermodynamics of the formation of thermal defects in intermetallic aluminides. We focus on thermal vacancies studied by the specific techniques of positron annihilation and time-differential dilatometry and discuss the results together with self-diffusion data. We then demonstrate that these techniques can be employed for studying vacancies in compound semiconductors specifically. Furthermore, structural order-disorder phase transitions can be investigated from an atomistic point of view by making use of positron annihilation as shown in the exemplary case of decagonal Al-Ni-Co quasicrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westbrook, J.H. and Fleischer, R.L. (eds.), Intermetallic Compounds: 4 Vols., J. Wiley and Sons, Chichester, UK, (2000).Google Scholar
2. Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., J. Appl. Phys. 39, 4234 (1968)Google Scholar
3. Schaefer, H.-E., Frenner, K., and Würschum, R., Intermetallics 7, 277 (1999)Google Scholar
4. Sprengel, W., Müller, M.A., and Schaefer, H.-E., Diffusion and Defect Structures, in: Intermetallic Compounds, Vol. 3, Principles and Practice, (eds.) Westbrook, J.H. and Fleischer, R.L., J. Wiley and Sons, Chichester, UK, (2002), 275293 Google Scholar
5. Sprengel, W., Baier, F., Sato, K., Zhang, X.Y., Reimann, K., Würschum, R., Sterzel, R., Assmus, W., Frey, F., and Schaefer, H.-E., in: Quasicrystals: Structure and Properties, Wiley-VCH, Weinheim, Germany (2003), p. 414429 Google Scholar
6. Schaefer, H.-E., Frenner, K., and Würschum, R., Phys. Rev. Lett. 82, 948 (1999)Google Scholar
7. Schaefer, H.-E., Phys. Stat. Sol. (a) 102, 47 (1987)Google Scholar
8. Zhang, X.Y., Sprengel, W., Staab, T.E.M., Inui, H., and Schaefer, H.-E., Phys. Rev. Lett. 92, 155502 (2004)Google Scholar
9. Mijnarends, P.E., Kruseman, A.C, van Veen, A, Schut, H and Bansil, A, J. Phys. – Cond. Matter 10, 10383 (1998)Google Scholar
9a. Partyka, E., Sprengel, W., Weigand, H., Schaefer, H.-E., Krogh, F., and Kostrorz, G., to be publishedGoogle Scholar
10. Zhang, X. Y., Sprengel, W., Reichle, K.J., Blaurock, K., Henes, R., and Schaefer, H.-E., Phys Rev. B 68, 224102 (2003)Google Scholar
11. Kerl, R, Wolff, J., and Hehenkamp, Th., Intermetallics 7, 301 (1999)Google Scholar
12. Wolff, J., Broska, A., Franz, M., Köhler, B., and Hehenkamp, Th., Mater. Sci. Forum 255–257, 593 (1999)Google Scholar
13. Eggersmann, M., Dr. rer. nat. thesis, Münster University, Germany (1998)Google Scholar
14. Eggersmann, M. and Mehrer, H., Metallofizika I Noveshie Tekhnologii 21, 70 (1999)Google Scholar
15. Nakamura, R. and Iijima, Y., Philos. Mag. 84, 1906 (2004)Google Scholar
16. Rummel, G., Zumkley, T., Eggersmann, M., Freitag, K., and Mehrer, H., Z. Metallkd. 86, 131 (1996)Google Scholar
17. Salamon, M., Strohm, A, Voss, T., Laitinen, P., Riihimäki, I., Divinski, S., Frank, W., Räisänen, J., and Mehrer, H., Philos. Mag. 84, 737 (2004)Google Scholar
18. Salamon, M. and Mehrer, H., Defect Diffus. Forum 216–217, 161 (2003)Google Scholar
19. Rempel, A. A., Sprengel, W., Blaurock, K., Reichle, K.J., Major, J., and Schaefer, H.-E., Phys. Rev. Lett. 89, 185501 (2002)Google Scholar
20. Sato, K., Baier, F., Sprengel, W., Würschum, R., and Schaefer, H.-E., Phys. Rev. Lett. 92, 127403 (2004)Google Scholar
21. Ritsch, S., Beeli, C., Nissen, H.-U., Gödecke, T., Scheffer, M., and Lück, R., Philos. Mag. Lett. 78, 67 (1998)Google Scholar
22. Hiraga, K., Ohsuna, T., Sun, W., and Sugiyama, K., Mater. Trans., JIM 42, 2354 (2001)Google Scholar
23. Yan, Y. and Pennycook, S., Phys. Rev. Lett. 86, 1542 (2001)Google Scholar
24. Takakura, H., Yamamoto, A., and Tsai, A. P., Acta Crystallogr. Sect. A 57, 576 (2001)Google Scholar
25. Cervellino, A., Haibach, T., and Steurer, W., Acta Crystallogr. Sect. B 58, 8 (2002)Google Scholar
26. Henley, C. L., Mihalkovič, M., and Widom, M., J. Alloys Compd. 342, 221 (2002)Google Scholar
27. Mihalkovič, M., Al-Lehyani, I., Cockayne, E., Henley, C. H., Moghadam, N., Moriarty, J. A., Wang, Y., and Widom, M., Phys. Rev. B 65, 104205 (2002)Google Scholar
28. Yan, Y. and Pennycook, S., Nature 403, 266 (1999)Google Scholar
29. Frey, F., Weidner, E., Hradil, K., de Boissieu, M., Letonblon, A., McIntyre, G., Currat, R., and Tsai, A.P., J. Alloys Compd 342, 57 (2002)Google Scholar