Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:46:13.105Z Has data issue: false hasContentIssue false

Considerations for Large Area Fabrication of Integrated a-Si and Poly-Si TFTs

Published online by Cambridge University Press:  16 February 2011

P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
M. Hack
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. A. Lujan
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

The combination of a-Si low leakage pixel TFTs with poly-Si TFTs in peripheral circuits provides an excellent method for reducing the number of external connections to large-area imaging arrays and displays. To integrate the fabrication of the peripheral poly-Si TFTs with the a-Si pixel TFTs, we have developed a three-step laser process which enables selective crystallization of PECVD a-Si:H. X-ray diffraction and transmission electron microscopy show that the polycrystalline grains formed with this three-step process are similar to those crystallized by a conventional one step laser crystallization of unhydrogenated amorphous silicon. The grain size increases with increasing laser energy density up to a peak value of a few Microns. The grain size decreases with further increases in laser energy density. The transistor field effect mobility is correlated with the grain size, increasing gradually with laser energy density until reaching its maximum value. Thereafter, the transistors suffer from leakage through the gate insulators. A dual dielectric gate insulator has been developed for these bottom-gate thin film transistors to provide the correct threshold voltages for both a-Si and poly-Si TFTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S., and Hotta, K., IEEE Trans. Electron Devices, 36, 2868, (1989).Google Scholar
2. Shimizu, K., Sugiura, O., and Matsumura, M., Japn. J. Appl. Phys., 29, L1775, (1990).Google Scholar
3. Tanaka, T., Asuma, H., Ogawa, K., Shinagawa, Y., and Konishi, N., IEEE 1993 International Electron Devices Meeting Technical Digest, p389, (1993).Google Scholar
4. Mei, P., Boyce, J. B., Hack, M., Lujan, R., Johnson, R. I., Anderson, G. B., Fork, D. K., and Ready, S. E., Appl. Phys. Lett., 64, 1132, (1994).CrossRefGoogle Scholar
5. Mei, P., Boyce, J. B., Hack, M., Lujan, R., Ready, S. E., International Semiconductor Device Research Symposium Proceedings, Vol. 1, 47, (1993).Google Scholar
6. Johnson, R. I., Anderson, G. B., Boyce, J. B., Fork, D. K., Mei, P., Ready, S. E., and Chen, S., Amorphous Silicon Technology-1993, Mat Res. Soc. Symp. Proc. Vol. 297, 533, (1993).Google Scholar
7. Im, James S. and Kim, H. J., and Thompson, Michael O., Appl. Phys. Lett., 63, 1969, (1993).Google Scholar
8. Boyce, J. B., Anderson, G. B., Fork, D. K., Johnson, R. I., Mei, P., and Ready, S. E., to be published in Mat Res Symp Proc., (1994).Google Scholar
9. Powell, M. J., Deane, S. C., French, I. D., Hughes, J. R., and Milne, W. I., Philosophical Magazine B 63, No. 1, 325, (1991).Google Scholar
10. Hack, M. and Shaw, J., “Numerical simulations of amorphous silicon thin-film transistors”, Journal of Applied Physics, vol 68, No. 10, pp. 53375342 (1990).Google Scholar
11. Hack, M. and Shaw, J.G., “Transient simulations of amorphous silicon devices”, Proceedings of the Materials Research Society Symposium, vol 219, pp. 315320 (1991).Google Scholar
12. Hack, M., Shaw, J.G., LeComber, P.G. and Willums, M., “Numerical simulations of amorphous and polycrystalline silicon thin-film transistors”, Japanese Journal of Applied Physics, vol. 29, No. 12, pp. L23602362 (1990).Google Scholar