Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T01:28:43.409Z Has data issue: false hasContentIssue false

Continuum Modeling of Bilayer Lipid Membranes

Published online by Cambridge University Press:  01 February 2011

Raffaella De Vita
Affiliation:
devita@vt.edu, Virginia Tech, Mechanical Engineering, 305 Durham Hall, Blacksburg, Virginia, 24061, United States, 540-231-2915
David Hopkinson
Affiliation:
dph@vt.edu, Virginia Tech, Mechanical Engineering, 310 Durham Hall, Blacksburg, Virginia, 24061, United States
Vishnu B. Sundaresan
Affiliation:
vsundare@vt.edu, Virginia Tech, Mechanical Engineering, 310 Durham Hall, Blacksburg, Virginia, 24061, United States
Donald J. Leo
Affiliation:
donleo@vt.edu, Virginia Tech, Mechanical Engineering, 310 Durham Hall, Blacksburg, Virginia, 24061, United States
Get access

Abstract

A continuum model is used for the description of the mechanical response of bilayer lipid membranes (BLMs) subjected to hydrostatic pressure. The model is formulated under the assumption that the BLMs are Smectic A liquid crystals. The mean orientation of the amphiphilic molecules is postulated to be perpendicular to the lipid layers and each layer is idealized as a two dimensional liquid. The permeation process governs the motion of the molecules through the smectic layers. The approach taken in this study is based on the seminal works of Helfrich [1] and de Gennes [2] on Smectic A liquid crystals. The failure process of the BLMs, which is observed in the experimental studies, is considered to be due to extrusion of the BLMs through the pores of the polycarbonate filters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Helfrich, W.. Phys. Rev. Lett., 23, 372 (1969).Google Scholar
2. Gennes, P. G. de and Prost, J.. The Physics of Liquid Crystals. Oxford Science Publications, second edition (1993).Google Scholar
3. Leo, D.. Adv. Mater. Processes, 163, 25, 2005..Google Scholar
4. Sackmann, E.. Science, 271, 43 (1996).Google Scholar
5. Tien, T. H. and Ottowa, A. L.. J. Membrane Sc., 189, 83 (2001).Google Scholar
6. Worsfold, O., Toma, C., and Nishiya, T.. Biosens. Bioelectron., 19, 1505 (2004).Google Scholar
7. Collings, P. J. and Hird, M.. Introduction to Liquid Crystals Chemistry and Physics. Taylor & Francis, London and New York (1997).Google Scholar
8. Mueller, P., Donald, O. R., Tien, H. T., and Wescott, W. C.. J. Phys. Chem., 67, 534 (1963).Google Scholar
9. Martin, P. C., Parodi, O., and Pershan, P. S.. Phys. Rev. A, 6 (6), 2401 (1972).Google Scholar
10. Leger, L. and Martinet, A.. J. Phys. (Paris), 37, 89 (1976).Google Scholar
11. Chan, W. K. and Webb, W. W.. Phys. Rev. Lett., 46 (6), 603 (1981).Google Scholar
12. Dufrene, Y. F., Boland, T., Schneider, J. W., Barger, W. R., and Lee, G. U.. Faraday Discuss., 111, 79 (1998).Google Scholar
13. Jing, Z. and Run-Guang, S.. Chi. Phys. Soc., 11, 776 (2002).Google Scholar
14. Kunneke, S., Kruger, D., and Janshoff, A.. Biophys. J., 86, 1545 (2004).Google Scholar
15. Ries, R. S., Choi, H., Blunck, R., Bezanilla, F., and Heath, J. R.. J. Phys. Chem. B, 108, 16040, 2004..Google Scholar
16. Kato, M., Ozawa, S., and Hayashi, R.. Lipids, 32, 1229, 1997..Google Scholar