Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T03:08:32.706Z Has data issue: false hasContentIssue false

The Contribution To Bond Valences By Lone Electron Pairs

Published online by Cambridge University Press:  01 February 2011

Xiqu Wang
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204–5003, U.S.A.
Friedrich Liebau
Affiliation:
Institut für Geowissenschaften, Universität zu Kiel, D-24106 Kiel, Germany.
Get access

Abstract

Bond valence sums (BVS) calculated for lone-pair cations are found increasingly higher than their formal valences as the retraction of the lone electron pair (LEP) from the nucleus is more pronounced. The increase in BVS is interpreted as a continuous increase of an effective valence of an atom that is a measure of its actual ability to bind other atoms without changing its formal valence. How the LEP of a lone-pair cation affects the effective valence of other atoms in a structure is studied by bond valence calculations for specific structures. For structures rich in alkali cations, it is found that the high effective valence of the lone-pair cations tends to be balanced by low effective valence of alkali cations. The LEP transfers bonding power or effective valence from the alkali cations to the lone-pair cations by joining the coordination sphere of the alkali cations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pauling, L., J. Am. Chem. Soc., 51, 1010 (1929).Google Scholar
2. Brown, I. D., The Chemical Bond in Inorganic Chemistry, The Bond Valence Model (Oxford University Press, 2002).Google Scholar
3. Brown, I. D. and Altermatt, D., Acta Cryst., B41, 244 (1985).Google Scholar
4. Brese, N. E. and O'Keeffe, M., Acta Cryst., B47, 192 (1991).Google Scholar
5. Wang, X. and Liebau, F., Acta Cryst., B52, 7 (1996).Google Scholar
6. Wang, X. and Liebau, F., Z. Kristallogr., 211, 437 (1996).Google Scholar
7. Brown, I. D., J. Solid State Chem., 11, 214 (1974).Google Scholar
8. Belsky, A., Hellenbrandt, M., Karena, V. L. and Luksch, P., Acta Cryst. B58, 364 (2002).Google Scholar
9. Wagner, G. and Hoppe, R., J. Less-Comm. Metals, 120, 225 (1986).Google Scholar
10. Nowitzki, B. and Hoppe, R., Z. Anorg. Allg. Chem., 515, 114 (1984).Google Scholar
11. Roehr, C., Z. Anorg. Allg. Chem., 621, 757 (1995).Google Scholar
12. Roehr, C. and Zoennchen, P., Z. Anorg. Allg. Chem., 624, 797 (1998).Google Scholar
13. Brandes, R. and Hoppe, R., Z. Anorg. Allg. Chem., 620, 1549 (1994).Google Scholar
14. Martens, K. P. and Hoppe, R., Z. Anorg. Allg. Chem., 440, 81 (1978).Google Scholar
15. Stoever, H. D. and Hoppe, R., Z. Anorg. Allg. Chem., 468, 137 (1980).Google Scholar
16. Emmerling, F. and Roehr, C., Acta Cryst., C57, 1127 (2001).Google Scholar
17. Zoche, N. and Jansen, M., Z. Naturforsch., B52, 1031 (1997).Google Scholar
18. Zoche, N. and Jansen, M., Z. Anorg. Allg. Chem., 623, 832 (1997).Google Scholar
19. Andersen, L., Langer, V., Stroemberg, A. and Stroemberg, D., Acta Cryst., B45, 344 (1989).Google Scholar
20. Krivovichev, S. V. and Brown, I. D., Z. Kristallogr., 216, 245 (2001).Google Scholar
21. Locock, A. J. and Burns, P. C., Z. Kristallogr., 219, 259 (2004).Google Scholar
22. Liebau, F., Z. Kristallogr., 215, 381 (2000).Google Scholar