Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T15:16:35.305Z Has data issue: false hasContentIssue false

Copper Indium Diselenide thin films using a hybrid method of chemical bath deposition and thermal evaporation

Published online by Cambridge University Press:  10 August 2011

R. Ernesto Ornelas A
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
Sadasivan Shaji
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México CIIDIT- Universidad Autónoma de Nuevo León, Apodaca, Nuevo León, México.
Omar Arato
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
David Avellaneda
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
Alan Castillo
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
Tushar Kanti Das Roy
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
Bindu Krishnan
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México CIIDIT- Universidad Autónoma de Nuevo León, Apodaca, Nuevo León, México.
Get access

Abstract

Copper indium diselenide (CIS) based solar cells are one among the promising thin film solar cells. Most of the processes reported for the preparation of CIS directly or indirectly involve Se vapor or H2Se gases which are extremely toxic to health and environment. In this work, we report the preparation of CIS thin films by stacked layers of Glass/In/Se/Cu2Se and Glass/In/Se/Cu2Se/Se. For this, first indium (In) thin film was thermally evaporated on glass substrate on which selenium (Se) and copper selenide (Cu2Se) thin films were deposited sequentially by chemical bath deposition. Selenium thin films were grown from an aqueous solution containing Na2SeSO3 and CH3COOH at room temperature, triple deposition for 7, 7 and 10 min from consecutive baths. Copper selenide thin films were deposited at 35 °C for 1 hour from an aqueous bath containing CuSO4, Na2SeSO3 and NH4OH. Analysis of the X-ray diffraction patterns of the thin films formed at 400 °C from the precursor layer containing extra selenium layer showed the presence of chalcopyrite CuInSe2, without any secondary phase. Morphology of all the samples was analyzed using Scanning Electron Microscopy. Optical band gap was evaluated from the UV-Visible absorption spectra of these films and the values were 1.1 eV and 1 eV respectively for CIS thin films formed at 400 °C from the selenium deficient and selenium rich precursor layers. Electrical characterizations were done using photocurrent measurements. Thus preparation of a CuInSe2 absorber material by a non-toxic selenization process may open up a low cost technique for the fabrication of CIS based solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lambrecht, V. G., Materials Research Bulletin 8 (1973) 1383.Google Scholar
2. Luque, A., Hegedus, S., Handbook of Photovoltaic Science and Engineering, Wiley, New York (2006).Google Scholar
3. Deepa, K. G. et al. ., Solar Energy 83 (2009) 964968.Google Scholar
4. Park, S. C. et al. ., Solar Energy Materials and Solar Cells 69 (2001) 99105.Google Scholar
5. Müller, J. et al. ., Thin Solid Films 496 (2006) 364370.Google Scholar
6. Volobujeva, O. et al. ., Solar Energy Materials and Solar Cells 93 (2009) 1114.Google Scholar
7. Luo, P. et al. ., Solid State Communications 146 (2008) 5760.Google Scholar
8. Yoon, S. H. et al. ., Thin Solid Films 515 (2006) 15441547.Google Scholar
9. Whang, T.-J. et al. ., Applied Surface Science 257 (2010) 14571462.Google Scholar
10. Hankare, P. P. et al. ., Journal of Alloys and Compounds 500 (2010) 7881.Google Scholar
11. Yang, J. et al. ., Thin Solid Films 517 (2009) 66176622.Google Scholar
12. Bindu, K. et al. ., Solar Energy Materials and Solar Cells 79 (2003) 6779.Google Scholar
13. Bindu, K. et al. , Journal of The Electrochemical Society 153, (2006) 526534.Google Scholar
14. Cullity, B. D., Stock, R. S., Elements of X-Ray Diffraction, Third ed., Prentice Hall, New York, 2001, 96102.Google Scholar
15. Caballero, R., Guillen, C., Solar Energy Materials & Solar Cells 86 (2005) 110.Google Scholar
16. Agilan, S., Mangalaraj, D., Narayandass, Sa.K., Mohan Rao, G., Physica B 365 (2005) 93101.Google Scholar
17. Jiang, F. et al. , Thin Solid Films 515 (2006) 19501955.Google Scholar