Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T03:45:08.507Z Has data issue: false hasContentIssue false

Crack Growth Behavior in a Two-Phase Mo-Si-B Alloy

Published online by Cambridge University Press:  26 February 2011

Sharvan Kumar
Affiliation:
Sharvan_Kumar@brown.edu, Brown University, Engineering, 182 Hope Street, Box D, Providence, RI, 02912, United States, (401) 863 2862, (401) 863 7677
Amruthavalli Pallavi Alur
Affiliation:
amruthavalli.p.alur@intel.com, Intel Corporation, 5000 W. Chandler Blvd, CH5-159 (M/S), Chandler, AZ, 85226, United States
Get access

Abstract

Mo-rich Mo-Si-B multiphase alloys are currently being explored for their potential as high-temperature structural materials for components in hot sections in aircraft engines. In this paper, we present crack growth behavior in one such two-phase alloy consisting of a Mo solid solution matrix in which is dispersed approximately 40 volume percent of the Mo5SiB2 (T2) phase. Crack growth under monotonic and cyclic loading is considered over a temperature range spanning 20°C to 1400°C. The effects of loading rate (in monotonic loading) and dwell times at maximum stress (in cyclic loading) at high temperatures on crack growth were examined to understand the contribution from creep. Results confirm a gradual increase in fracture toughness upto 1000°C, beyond which the increase is more substantial with temperature; fatigue susceptibility was also observed in excess of 900°C and crack-tip-stresses-driven microstructural instability is evident at 1400°C. At this temperature, slow loading rates or dwell times at maximum stress lead to crack-tip recrystallization and creep cavitation that together degrade the material's properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bewlay, B. P., Jackson, M. R., Zhao, J._C., Subramanian, P. R., Mendiratta, M. G. and Lewandowski, J. J., MRS Bulletin, 28, 646 (2003).Google Scholar
2. Dimiduk, D. M. and Perepezko, J. H., MRS Bulletin, 28, 639 (2003).Google Scholar
3. Perepezko, J. H., Sakidja, R. and Kumar, K. S., “Mo-Si-B Alloys for Ultra-High Temperature Applications”, in Advanced Structural Materials: Properties, Design, Optimization and Applications, Marcel Dekker, Inc.– in press, November 2006.Google Scholar
4. Nunes, C. A., Sakidja, R. and Perepezko, J. H., in Structural Intermetallics (1997), Editors; Nathal, M. V. et al., TMS, Warrendale, PA. (1997), p. 831.Google Scholar
5. Sakidja, R., Wilde, G., Sieber, H. and Perepezko, J. H., in High-Temperature Ordered Intermetallic Alloys VIII, Vol. 552, editors, George, E. P., Mills, M. J. and M., Yamaguchi, Materials Research Society, Warrendale, PA, (1999), p. KK6.3.1.Google Scholar
6. Perepezko, J. H., Sakidja, R. and Kim, S., in High Temperature Ordered Intermetallic Alloys IX, Vol. 646, editors, Schneibel, J. H. et al., Materials Research Society, Pittsburgh, PA, (2001), p. N4.5.Google Scholar
7. Perepezko, J. H., Sakidja, R., Kim, S., Dong, Z. and Park, J. S., in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, (2001), p.505.Google Scholar
8. Sakidja, R. and Perepezko, J. H., Metall. Mater. Trans., 36A, 507 (2005).Google Scholar
9. Sakidja, R., Kim, S., Park, J. S., and Perepezko, J. H., in Defect Properties and Related Phenomena in Intermetallic Alloys, Vol. 753, editors, George, E. P., Inui, H., Mills, M. J. and Eggler, G., Materials Research Society, Warrendale, PA, (2003, BB2.3.Google Scholar
10. Parthasarathy, T. A., Mendiratta, M. G. and Dimiduk, D. M., Acta Mater., 50, 1857 (2002).Google Scholar
11. Mandal, P., Thom, A. J., Behrani, V., Kramer, M. J., and Akinc, M., Mater. Sci Eng., A371, 335 (2004).Google Scholar
12. Meyer, M. K., Thom, A. J. and Akinc, M., Intermetallics, 7, 153 (1999).Google Scholar
13. Thom, A. J., Summers, E. and Akinc, M., Intermetallics, 10, 555 (2002).Google Scholar
14. Behrani, V., Thom, A., Kramer, M. and Akinc, M., Metall. Mater. Trans., 36A, 609 (2005).Google Scholar
15. Ito, K., Hayashi, T., Yokobayashi, M., Murakami, T. and Numakura, H., Metall. Mater. Trans., 36A, 627 (2005).Google Scholar
16. Jéhanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., and Jackson, M., Metall. Mater. Trans., 36A, 515 (2005).Google Scholar
17. Schneibel, J. H., Ritchie, R. O., Kruzic, J. J. and Tortorelli, P. F., Metall. Mater. Trans., 36A, 525 (2005).Google Scholar
18. Ito, K., Ihara, K., Tanaka, K., Fujikura, M. and Yamaguchi, M., Intermetallics, 9, 591 (2001).Google Scholar
19. Meyers, M. K., Kramer, M. J. and Akinc, M., Intermetallics, 4, 273 (1996).Google Scholar
20. Mason, D. P. and Aken, D. C. Van, Acta Metall. Mater., 43, 1201 (1995).Google Scholar
21. Yoshimi, K., Yoo, M. H., Wereszczak, A. A., Borowicz, S. M., George, E. P. and Zee, R. H., Scripta Mater., 45, 1321 (2001).Google Scholar
22. Rosales, I. and Schneibel, J. H., Intermetallics, 8, 885 (2000).Google Scholar
23. Alur, A. P., Chollacoop, N. and Kumar, K. S., Acta Materialia, 52, 5571 (2004).Google Scholar
24. Yoshimi, K., Nakatani, S., Nomura, N. and Hanada, S., Intermetallics, 11, 787 (2003).Google Scholar
25. Schneibel, J. H., Kramer, M. J., Unal, O. and Wright, R. N., Intermetallics, 9, 25 (2001).Google Scholar
26. Schneibel, J. H., Easton, D. S., Choe, E. and Ritchie, R. O., in Proceedings of the International Symposium on Structural Intermetallics, Jackson Hole, WY, The Materials Society, Warrendale, PA, (2001), p. 801.Google Scholar
27. Schneibel, J. H., Liu, C. T., Heatherly, L. and Kramer, M. J., Scripta Mater., 7, 1169 (1998).Google Scholar
28. Schneibel, J. H., Intermetallics, 11, 625 (2003).Google Scholar
29. Nieh, T. G., Wang, J. G. and Liu, C. T., Intermetallics, 9, 73 (2001).Google Scholar
30. Choe, H., Chen, D., Schneibel, J.H. and Ritchie, R.O., Intermetallics, 9, 319 (2001).Google Scholar
31. Choe, H., Schneibel, J. H. and Ritchie, R. O., Metall. Mater. Trans., 34A, 225 (2003).Google Scholar
32. Kruzic, J. J., Schneibel, J. H. and Ritchie, R.O., Scripta Mater., 50, 459 (2004).Google Scholar
33. Challenger, K. D. and Vining, P. G., Journal of Eng. Mat. Techn., 105, 280 (1983).Google Scholar
34. Sadananda, K. and Shahinian, P., Met. Trans. A, 11A, 267(1980).Google Scholar
35. Sadananda, K. and Shahinian, P., Engineering Fracture Mechanics, 11, 73 (1979).Google Scholar
36. Chen, S.-F. and Wei, R. P., Mater. Sci. Eng., A256, 197 (1998).Google Scholar
37. Alur, A. P., Chollacoop, N. and Kumar, K. S., Acta Mater., (2006) – in press.Google Scholar
38. Alur, A. P. and Kumar, K. S., Acta Mater., 54, 385 (2006).Google Scholar
39. Jain, P. and Kumar, K. S., MRS Fall Meeting (2006) – this proceedings.Google Scholar