Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:12:34.519Z Has data issue: false hasContentIssue false

Crystallization of Amorphous LPCVD Silicon Films and Application to Bipolar and Thin Film Transistors

Published online by Cambridge University Press:  22 February 2011

Miltiadis K. Hatalis
Affiliation:
Lehigh University, Dept. of Computer Science and Electrical Engineering, Bethlehem, PA 18015
David W. Greve
Affiliation:
Carnegie Mellon University, Dept. of Electrical and Computer Engineering, Pittsburgh, PA 15213
Get access

Abstract

We studied the crystallization of LPCVD amorphous silicon films by TEM and found that the grain size of crystallized films depends upon the deposition and annealing conditions. The grain size increases as the deposition and/or the annealing temperature decreases. We also investigated the application of crystallized films in the fabrication of polysilicon emitter bipolar transistors and thin film transistors. The performance of bipolar transistors was found to have a small dependence on the grain size. In contrast, the performance of thin film transistors was strongly dependent upon the grain size.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamins, T.I., Mandirah, M.M. and Saraswat, K.C., J. Electrochem. Soc. 125, 927 (1978).Google Scholar
2. Harbeke, G., Krausbauer, L., Steigmeir, E.F., Widmer, A.E., Kappert, H.F and Neugebauer, G., J. Electrochem. Soc. 131, 675 (1984).Google Scholar
3. Becker, F.S., Oppolzer, H., Weitzel, I., Eichermuller, H. and Shaber, H., J. Appl. Phys. 56, 1233 (1984).Google Scholar
4. Mahli, S.D. et al IEEE Trans. Electron Devices ED–32, 258 (1985).Google Scholar
5. Hatalis, M.K., Ph. D. Thesis, Carnegie Mellon Univ., (1987).Google Scholar
6. Hatalis, M.K. and Greve, D.W., to be published in J. Appl. PhysGoogle Scholar
7. Hatalis, M.K. and Greve, D.W., IEEE Electron Device Lett. EDL-8, 361 (1987).Google Scholar
8. Ning, T.H. and Isaac, R.D., IEEE Trans. Electron Devices ED-27, 2051 (1980).Google Scholar
9. Li, G.P., Ning, T.H., Chuang, T., Ketchen, M.B., Tang, D.D.L., and Mauer, J. IEEE Trans. Electron Devices ED-34, 2246 (1987).Google Scholar
10. Troxell, J.R., Harrington, M.I., Erskine, J.C., Dumbaugh, W.H., Fehlner, F.P. and Miller, R.A., IEEE Electron Device Lett. EDL-7, 597 (1986).Google Scholar
11. Noguchi, T., Hayashi, H. and Ohshima, T., Jpn. J. Appl. Phys. 25, 121 (1986).Google Scholar