Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T04:17:58.088Z Has data issue: false hasContentIssue false

Deep-UV Transparent Conductive β-Ga2O3 Film

Published online by Cambridge University Press:  21 March 2011

Masahiro Orita
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu-ku, Kawasaki, 213-0012, JAPAN
Hiromichi Ohta
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu-ku, Kawasaki, 213-0012, JAPAN
Masahiro Hirano
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, KSP C-1232, 3-2-1 Sakado, Takatsu-ku, Kawasaki, 213-0012, JAPAN
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, JAPAN
Get access

Abstract

Deep ultraviolet transparent and electrical conductive β-Ga2O3 film was prepared on SiO2 glass substrate. The film had electric conductivity of 1 Scm−1, carrier density of 1.4 × 1019cm−3 and mobility of 0.44 cm2V−1s−1. Internal transmittance at wavelength of 248 nm exceeded 50 %. Conductivity was enhanced at an oxygen pressure less than 10−4 Pa, and transparency appeared at a substrate temperature over 800 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohta, H., Orita, M., Hirano, M., Tanji, H., Kawazoe, H. and Hosono, H., Appl. Phys. Lett. 76, 2740 (2000).Google Scholar
2. Omata, T., Ueda, N., and Kawazoe, H., Appl. Phys. Lett., 64, 1077 (1994).Google Scholar
3. Yan, Z., Takei, H., and Kawazoe, H., J. Am. Ceram. Soc. 81, 180 (1998).Google Scholar
4. Lorenz, M. R., Woods, J. F., and Gambino, R. J., J. Phys. Chem. Solids 28, 403, (1967).Google Scholar
5. Cojoaru, L. N., and Alecu, I. D., Zeitshrift fur Physikalische Chemie Neue Folge, 84, 325 (1973).Google Scholar
6. Harwig, T., Wubs, G. J., and Dirksen, G. J., Solid State Commun. 18, 1223 (1976).Google Scholar
7. Fleischer, M. and Meixner, H., J. Appl. Phys. 74, 300 (1993).Google Scholar
8. Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H., Appl. Phys. Lett. 70, 3561 (1997).Google Scholar
9. Ueda, N., Hosono, H., Waseda, R., and Kawazoe, H., Appl. Phys. Lett. 71, 933 (1997).Google Scholar
10. Yang, S-H., Yokoyama, M., Jpn. J. Appl. Phys. 37, 6429 (1998).Google Scholar
11. Feltz, A. and Gamsjager, E., J. Europ. Ceram. Soc. 18, 2217 (1998).Google Scholar
12. Frank, J., Fleischer, M., Meixner, H. and Feltz, A., Sensors and Actuators B49, 110 (1998)Google Scholar
13. Ogita, M., Saika, N., Nakanishi, Y., and Hatanaka, Y., Appl. Surf. Sci. 142, 188 (1999).Google Scholar
14. Geller, S., J. Chem. Phys. 33, 676 (1960).Google Scholar
15. Binet, L., Gourier, D., and Minot, C., J. Solid State Chem. 113, 420 (1994).Google Scholar
16. Binet, L. and Gourier, D., J. Phys. Chem. solids 59, 1241 (1998).Google Scholar
17. Elliott, S.R., Physics of Amorphous Materials, (Longman, London, 1983)Google Scholar