Published online by Cambridge University Press: 21 February 2011
It is a question as yet unresolved whether the density of light-induced defects in a-Si:H reaches a saturated value that cannot fundamentally be exceeded, or whether the defect density is in all conditions a steady-state value that reflects carrier concentration and temperature. In our experiments on a-Si:H we have observed defect saturation at low temperature and high light intensity; on the other hand, data exhibiting no saturation have also been published. To learn more about this question we have carried out saturation experiments on a-SiGe:H(F) alloys. These alloys have lower defect freeze-in temperatures than a-Si:H and, presumably, lower annealing energies. Therefore, saturation should be more difficult to achieve in the alloys than in a-Si:H.
We have studied saturation for a-SiGe:H(F) samples to temperatures above the onset of thermal annealing and have observed that its behavior is similar to that seen in a-Si:H.