Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:57:41.969Z Has data issue: false hasContentIssue false

Defect Structure and Crystallographic Texture of Polycrystalline Electrodeposits

Published online by Cambridge University Press:  10 February 2011

H. D. Merchant
Affiliation:
Gould Electronics, Eastlake, Ohio 44095
O. B. Girin
Affiliation:
State Metallurgical Academy of Ukraine, Prospelet Gagarina 4, Dnepropetrovsk 320635, Ukraine
Get access

Abstract

The polycrystalline electrodeposits of metals and alloys are characterized by exceptionally fine, equiaxed grain structure; the grain sizes two to four orders of magnitude smaller than those encountered in the bulk metals are generally obtained. Under the conditions of high cation discharge rate, twins accommodate interface growth; elongated grains and columnar morphology then become the common features. The dislocation density can be very high; the dislocations reside primarily as complex substructural configurations which are inherently unstable to thermal or mechanical stimuli. Vacancies, microvoids and vacancy/impurity complexes are endemic to deposits. The defect structure infrastructure (dislocation density and configuration, twinning frequency and hydrogen bubbles) is controlled by the deposition overpotential which also determines the preferred crystallographic texture. When the texture axis is parallel to the twin plane, anisotropie grain structure and columnar morphology are promoted; when the texture axis is perpendicular to the twin plane, a layered structure forms. The textured electrodeposit generates a duplex grain and subgrain structure. The random grains are small and defect saturated; the oriented grains are much larger and relatively free from crystal defects. The incidence of random grains, their size and defect concentration also depend upon the melting temperature of the metal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Nakahara, S., Thin Solid Films 45 (1977), 421.Google Scholar
(2) Vikarchuck, A. A., Soviet Electroch. 26 (1990), 883.Google Scholar
(3) Schmidt, C., Galvanotechnik 82 (1991), 3800.Google Scholar
(4) Merchant, H. D., “Defect Structure of Electrodeposits” in Defect Structurer Morphology and Properties of DepositsT The Minerals, Metals and Materials Society, 1995, 159.Google Scholar
(5) Bergstresser, T. R. and Merchant, H. D., “Surface Morphology of Electrodeposits” in Defect Structure, Morphology and Properties of Deposits. The Minerals, Metals and Materials Society, 1995, 115167.Google Scholar
(6) Girin, O. B., “Texture Development and Texture/Property Relations in Electrodeposits”, in Defect Structure. Morphology and Properties of Deposits, The Minerals, Metals and Materials Society, 1995, 103114.Google Scholar
(7) Vikarchuk, A. A., Soviet Electrochem. 28 (1992), 805.Google Scholar
(8) Vikarchuk, A. A. and Vinogradov, A. A., “Defects with Rotation Symmetry in Galvanic FCC Metals and their Behavior under Load” in Strength of Materials. Japan Institute of Metals, 1994, 223226.Google Scholar
(9) Vikarchuck, A. A., Volenko, A. P. and Yurchenkova, S. A., Soviet Electroch. 27 (1991), 535.Google Scholar
(10) Bollmann, W., Mater. Sei. Eng. A 113 (1989), 129.Google Scholar
(11) Wong, L. et al, “Mechanical Properties of Nanocrystalline Ni-P Alloys”, in Nanophase and Nanocrvstalline Structures. TMS, 1993, 85.Google Scholar
(12) Hughes, G. D. et al, Scripta Metall. 20 (1986), 93.Google Scholar
(13) McMahon, G. and Erb, U., Microstr. Sci. 17 (1989), 447.Google Scholar
(14) Gamburg, Y. D. et al, Soviet Electroch. 10 (1974), 278; 1420.Google Scholar
(15) Astakhova, R. K. et al, J. Appl. Chem. USSR 22 (1990), 930.Google Scholar
(16) Trofimenko, V. V. et al, Soviet Electroch. 11 (1975), 1761.Google Scholar
(17) Kozlov, V. M. et al, Soviet Electroch. 25 (1989), 1067.Google Scholar
(18) Kozlov, V. M., Soviet Electroch. 17 (1981), 1083.Google Scholar
(19) Kozlov, V. M. and Lyubchik, O. I., Soviet Electroch. 25 (1989), 845.Google Scholar
(20) Kozlov, V. M., Soviet Electroch. 23 (1987), 808.Google Scholar
(21) Povetkin, V. V. and Kovenskii, I. M., Russian Metall. (2) (1983), 91.Google Scholar
(22) Boltushkin, A. V. and Tochitskii, T. A., Soviet Electroch. 26 (1990), 437.Google Scholar
(23) Choi, H. J. and Weil, R., Plating and Surface Finishing 68 (May, 1981), 110.Google Scholar
(24) Janowski, G. M. and Stafford, G. R., Metall. Trans. A 23A (1992), 2715.Google Scholar
(25) Tochitskii, T. A. and Boltushkin, A. V., Soviet Electroch, 25 (1989), 430.Google Scholar
(26) Watanabe, T. and Kanayama, T., Nippon Kinzoku Gakkaishi 58 (1994), 132.Google Scholar
(27) Polukarov, Y. M. and Semenova, Z. V., Soviet Electroch. 12 (1976), 1059.Google Scholar
(28) HintFaragon, R. W., Schwartz, L. H. and Cohen, J. B., J. Electrochem. Soc. 110 (1963), 103.Google Scholar
(29) Mamontov, E. A., Kurbatova, L. A. and Tolstonogova, S. B., Soviet Electrochem. 16 (1980), 1450.Google Scholar
(30) Stoebe, T. G., Hammand, F. H. and Rudee, M. J., Electrochem. Acta 9 (1964), 925.Google Scholar
(31) Schultze, W. A., J. Crystal Growth 13/14 (1972), 421.Google Scholar
(32) Nakahara, S. and Mahajan, S., J. Electroch. Soc. 127 (1980), 283.Google Scholar
(33) Zhikhareva, I. G. and Zhikharev, A. I., Soviet Electroch. 18 (1982), 971.Google Scholar
(34) Povetkin, V. V. and Kovenskii, I. M., Soviet Electroch. 22 (1986), 1101.Google Scholar
(35) Mokhov, A. G. and Proskurnikov, A. A., Soviet Electroch. 11 (1975), 774.Google Scholar
(36) Kazakbaer, M. K., Tr. Przheval'skogo Ped. Inst., Ser. Fiz.-Met. (9) (1963), 43.Google Scholar
(37) Mamontov, E. A. and Kozlov, V. M., Soviet Electroch. 5 (1969), 1096.Google Scholar
(38) Mamontov, E. A., Kozlov, V. M. and Azovskii, V. M., Soviet Electrochem. 15 (1979), 1497.Google Scholar
(39) Povetkin, V. V. and Ermakova, N. A., Soviet Electroch. 18 (1982), 1484.Google Scholar
(40) Polukarov, Y. M. and Semenova, Z. V., Soviet Electroch. 10 (1974), 141.Google Scholar
(41) Povetkin, V. V., Soviet Electroch. 15 (1979), 618; Russian Metall. (4) (1980), 213.Google Scholar
(42) Zhikhareva, I. G. and Zhikharev, A. I., Soviet Electroch. 18 (1982), 876.Google Scholar
(43) Kovenskii, I. M. and Povetkin, V. V., Soviet Electroch. 25 (1989), 1271; Russian Metall. (1) (1990), 116; Hyperfine Interactions 52 (1989), 367.Google Scholar
(44) Povetkin, V. V. and Kovenskii, I. M., Soviet Electroch. 27 (1991), 802; Russian Metall. (3) (1987), 136.Google Scholar
(45) Povetkin, V. V., Shibleva, T. G. and Kovenskii, I. M., Soviet Electroch. 26 (1990), 1616.Google Scholar
(46) Bertocci, U. and Bertocci, C., J. Electroch. Soc. 118 (1971), 1287.Google Scholar
(47) Bebezuk de Cusminsky, J., Electroch. Acta 15 (1970), 73.Google Scholar
(48) Bebozuk de Cusminsky, J., J. Crystal Growth 41 (1977), 330.Google Scholar
(49) Froment, M. and Maurin, G., Microsc, J.. Spectrosc. Electron. 22 (1986), 589.Google Scholar
(50) Maurin, G., in Growth and Properties of Metal Clusters. Bourdon, J., ed., Elsevier(1980), 101.Google Scholar
(51) Mamontov, E. A., Kozlov, V. M., and Kurbatov, L. A., Soviet Electroch. 12 (1976), 377; 15 (1979), 217.Google Scholar
(52) Amblard, J. et al, Electroch. Acta 28 (1983), 909.Google Scholar
(53) Mamontov, E. A., Kurbatova, L. A. and Volenko, A. P., Soviet Electroch. 19 (1983), 1383; 22 (1986), 589; 23 (1987), 166.Google Scholar
(54) Hall, C. R. and Fawzi, S. A. H., Philos. Mag. A54 (1986), 805.Google Scholar
(55) Atanassov, N., Vitoka, S. and Rashkov, S., Surf. Tech. 13 (1981), 215.Google Scholar
(56) Shadrow, V. G., Boltushkin, A. V. and Tochitskii, T. A., Russian Metall. (4) (1970), 61.Google Scholar
(57) Barboshkin, A. N. et al, Soviet Electroch. 14 (1978), 6.Google Scholar
(58) Rashkov, S., Stoichev, D. S. and Timov, I., Electroch. Acta 17 (1972), 1955.Google Scholar
(59) Rashkov, S. and Stoichev, D. S., Surf. Tech. 6 (1978), 155.Google Scholar
(60) Girin, O. B. and Khlyntsev, V. P., Russian Metall. (6) (1990), 151.Google Scholar
(61) Girin, O. B., Indus. Lab. 49 (1983), 55.Google Scholar
(62) Girin, O. B., Russian Metall. (5) (1988), 122.Google Scholar
(63) Girin, O. B. and Vorob'ev, G. M., Russian Metall. (3) (1987), 140.Google Scholar
(64) Girin, O. B. and Vorob'ev, G. M., Russian Metall. (4) (1987), 148.Google Scholar
(65) Girin, O. B. and Vorob'ev, G. M., Zh. Fizicheskoi Khimii 62 (5) (1988), 1347.Google Scholar
(66) Girin, O. B., Khlyntsev, V. P. and Kalichevskii, S. V., Fizika Neuporyadochennykh Sistem (8) (1986) 81.Google Scholar
(67) Girin, O. B. et al, Electronnaya Obrabotka Materialov (1) (1990), 84.Google Scholar
(68) Danilov, F. I., Girin, O. B. and Popov, E. R., Zaschita Metallov 29 (6) (1993), 942.Google Scholar
(69) Watanabe, T. and Tanabe, Y., “Preparation and Physical Properties ofFe-W and Co-W Amorphous Alloys by Electroplating Method” in Rapidly Quenched Metals. Elsevier (1985), 127131.Google Scholar
(70) Narita, A., Watanabe, T. and Tanabe, Y., “Preparation of Ni-S Amorphous Alloy by Electroplating Method”, in Rapidly Quenched Metals. Elsevier (1985), 133137.Google Scholar
(71) Bestgen, H., “Microstrctures of Amorphous and Microcrystalline Electrodeposited Co-P, Ni-P and Fe-P”, in Rapidly Quenched Metals. Elsevier (1985), 443446.Google Scholar
(72) Girin, O. B., Russian Metall. (4) (1990), 128.Google Scholar
(73) Girin, O. B. and Vorob'ev, G. M., Russian Metall. (2) (1983), 129.Google Scholar
(74) Girin, O. B., Russian Metall. (2) (1986), 174.Google Scholar
(75) Girin, O. B., Russian Metall. (1), (1990), 179.Google Scholar
(76) Girin, O. B., Russian Metall. (5) (1990), 109.Google Scholar
(77) Girin, O. B., Russian Metall. (5) (1990), 113.Google Scholar