Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T05:25:51.905Z Has data issue: false hasContentIssue false

Density Functional Theory Calculations On Magnetic Properties Of Actinide Compounds

Published online by Cambridge University Press:  08 March 2011

Eugene Heifets
Affiliation:
Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063,Riga, Latvia
Denis Gryaznov
Affiliation:
Institute for Solid State Physics, University of Latvia, Kengaraga 8, LV-1063,Riga, Latvia
Get access

Abstract

We have performed a detailed analysis of the magnetic (collinear and noncollinear) order and atomic and electron structures of UO2, PuO2 and UN on the basis of density functional theory with the Hubbard electron correlation correction (DFT+U). We have shown that the 3-k magnetic structure of UO2 is stabilized for the Hubbard parameter value of U=4.6 eV (while J=0.5 eV) when Dudarev’s formalism is used. UO2 keeps cubic shape in this structure. Two O atoms nearest to each U atom in direction of its magnetic moment move toward this U atom. Neither UN nor PuO2 shows the energetical preference for the rhombohedral distortion, in contrast to UO2, and, thus, no complex 3-k magnetic structure in these materials. Both materials have the AFM tetragonal <001> structure at reasonable choice of parameters U and J.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Curry, N. A., Proc. Phys. Soc. 86, 1193 (1965).Google Scholar
2. Prodan, I. D., Scuseria, G. E., Sordo, J. A., Kudin, K. N., Martin, R. L., J. Chem. Phys. 123, 014703 (2005).Google Scholar
3. Jomard, G., Amadon, B., Bottin, F., Torrent, M., Phys. Rev. B 78, 075125 (2008).Google Scholar
4. Sun, B., Zhang, P., Zhao, X.-G., J. Chem. Phys. 128, 084705 (2008).Google Scholar
5. Jollet, F., Jomard, G., Amadon, B., Crocombette, J. P., Torumba, D., Phys. Rev. B 80, 235109 (2009).Google Scholar
6. Colarieti-Tosti, M., Eriksson, O., Nordström, L., Wills, J., Brooks, M. S. S., Phys. Rev. B 65, 195102 (2002).Google Scholar
7. Gryaznov, D., Heifets, E., Kotomin, E., Phys. Chem. Chem. Phys. 11, 7241 (2009).Google Scholar
8. Laskowski, R., Madsen, G. K. H., Blaha, P., Schwarz, K., Phys. Rev. B 69, 140408 (2004).Google Scholar
9. Kohn, W., Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
10. Blaha, P., Schwarz, K., Madsen, G. K.H., Kvasnicka, D., Luitz, J., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Schwarz, K., Techn. Universität Wien, Austria), ISBN 3-9501031-1-2, 2001 Google Scholar
11. Evarestov, R.A., Bandura, A., Blokhin, E., Acta Mater. 57, 600 (2008).Google Scholar
12. Kresse, G., Furthmüller, J., Comp. Mater. Sci. 6, 15 (1996).Google Scholar
13. Kresse, G., Furthmüller, J., VASP, the Guide (University of Vienna), 2007 Google Scholar
14. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
15. Kresse, G., Joubert, D., Phys. Rev. B 59 (3), 1758 (1999).Google Scholar
16. Dudarev, S.L., Botton, G. A., Savrasov, S. Y., Szotek, Z., Temmerman, W. M., Sutton, A. P., Phys. Status Solidi A 166, 429 (1998).Google Scholar
17. Liechtenstein, A. I., Anisimov, V. I., Zaane, J., Phys. Rev. B 52, R5467 (1995).Google Scholar
18. Szyżyk, M. T., Sawatzky, G. A., Phys. Rev. B 49 (20), 14211 (1994). The technique, proposed in this paper, is often called "around mean field" method. Under this name it is used in Wien2k code10 and in ref. 8.Google Scholar
19. Monkhorst, J., Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
20. Gryaznov, D., Heifets, E., Kotomin, E.A. (in preparation).Google Scholar
21. McNeilly, C. E., J. Nucl. Mater. 11 (1), 53 (1964).Google Scholar
22. Caciuffo, R., Amoretti, G., Santini, P., Lander, G. H., Kulda, J., de, P. Du Plessis, V., Phys. Rev. B 59, 13892 (1999).Google Scholar
23. Matzke, H. Science of Advanced LMFBR Fuels (North Holland:Amsterdam, 1986).Google Scholar
24. Haschke, J. M., Allen, T. H., and Morales, L. A., Science 287, 285 (2000).Google Scholar
25. Dorado, B., Jomard, G., Freuss, M., and Bertolus, M., Phys. Rev. B 82, 035114 (2010).Google Scholar
26. Faber, J. Jr, Lander, G. H., Phys. Rev. B 14(3), 1151 (1976); J. Faber, G. H. Lander, and B. R. Cooper, Phys. Rev. Lett. 35, 1770 (1970).Google Scholar
27. Ippolito, D., Martinelli, L., and Bevilacqua, G., Phys. Rev. B 71, 064419 (2005).Google Scholar
28. Baer, Y., Schoenes, J., Solid State Commun. 33, 885 (1980).Google Scholar