Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T01:43:13.871Z Has data issue: false hasContentIssue false

Density modulated multilayer silicon thin films as li-ion battery anodes

Published online by Cambridge University Press:  20 July 2012

M. Taha Demirkan
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204
Xin Li
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
Bingqing Wei
Affiliation:
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
Tansel Karabacak
Affiliation:
Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR 72204
Get access

Abstract

In this work, we demonstrate a new density modulated multilayered silicon thin film anode approach that can provide a robust high capacity electrode for Li-ion batteries. These films have the ability to tolerate large volume changes due to their controlled microstructure. Silicon films with alternating layers of high/low material density were deposited using a DC sputtering system. Density of the individual layers was controlled by simply changing the working gas pressure during sputtering. Samples of Si films having thicknesses of 460 nm with different number of high/low density layers have been deposited on Cu current collectors. The electrochemical performance of the multilayered anode material was evaluated using a galvanostatic battery testing system at C/10 rate. After reaching a stabilized phase the battery cell showed a high coulombic efficiency of 96% to 99% and reversible specific capacity of 666 mAh g-1 (after 100 cycles). Low-density layers are believed to be acting as compliant sheets during volume expansion making the films more durable compared to conventional Si film anodes. The results indicate that density modulated multilayer Si thin films can be used to improve the mechanical properties of Li-ion battery anodes leading to high reversible capacity values even after high number of cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tarascon, J. M. and Armand, M., Nature 414 (6861), 359367 (2001).Google Scholar
2. Uehara, M., Suzuki, J., Tamura, K., Sekine, K. and Takamura, T., J Power Sources 146 (1-2), 441444 (2005).Google Scholar
3. Sharma, R. A. and Seefurth, R. N., J Electrochem Soc 123 (8), C239C239 (1976).Google Scholar
4. Boukamp, G. C. L. B.A., Huggins, R.A., Journal of Electrochemical Society 128 (4), 4 (1981).Google Scholar
5. Green, M., Fielder, E., Scrosati, B., Wachtler, M. and Moreno, J. S., Electrochem Solid St 6 (5), A75A79 (2003).Google Scholar
6. Cheng, F., Liang, J., Tao, Z. and Chen, J., Adv Mater 23 (15), 16951715 (2011).Google Scholar
7. Kasavajjula, U., Wang, C. S. and Appleby, A. J., J Power Sources 163 (2), 10031039 (2007).Google Scholar
8. Guo, J. C., Chen, X. L. and Wang, C. S., J Mater Chem 20 (24), 50355040 (2010).Google Scholar
9. Arie, A. A., Song, J. O. and Lee, J. K., Mater Chem Phys 113 (1), 249254 (2009).Google Scholar
10. Doh, C. H., Park, C. W., Shin, H. M., Kim, D. H., Chung, Y. D., Moon, S. I., Jin, B. S., Kim, H. S. and Veluchamy, A., J Power Sources 179 (1), 367370 (2008).Google Scholar
11. Ren, Y. R., Qu, M. Z. and Yu, Z. L., Sci China Ser B 52 (12), 20472050 (2009).Google Scholar
12. Takamura, T., Awano, H., Ura, T. and Sumiya, K., J Power Sources 68 (1), 114119 (1997).Google Scholar
13. Holzapfel, M., Buqa, H., Krumeich, F., Novak, P., Petrat, F.-M. and Veit, C., Electrochemical and Solid-State Letters 8 (10), A516A520 (2005).Google Scholar
14. Chen, Z., Christensen, L. and Dahn, J. R., J Electrochem Soc 150 (8), A1073A1078 (2003).Google Scholar
15. Holzapfel, M., Buqa, H., Hardwick, L. J., Hahn, M., Wursig, A., Scheifele, W., Novak, P., Kotz, R., Veit, C. and Petrat, F. M., Electrochim Acta 52 (3), 973978 (2006).Google Scholar
16. Lee, J. H., Kim, W. J., Kim, J. Y., Lim, S. H. and Lee, S. M., J Power Sources 176 (1), 353358 (2008).Google Scholar
17. Lee, H. Y. and Lee, S. M., Electrochem Commun 6 (5), 465469 (2004).Google Scholar
18. Chan, C. K., Peng, H. L., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A. and Cui, Y., Nat Nanotechnol 3 (1), 3135 (2008).Google Scholar
19. Teki, R., Datta, M. K., Krishnan, R., Parker, T. C., Lu, T. M., Kumta, P. N. and Koratkar, N., Small 5 (20), 22362242 (2009).Google Scholar
20. Ohara, S., Suzuki, J., Sekine, K. and Takamura, T., J Power Sources 136 (2), 303306 (2004).Google Scholar
21. Karabacak, T., Picu, C. R., Senkevich, J. J., Wang, G. C. and Lu, T. M., J Appl Phys 96 (10), 57405746 (2004).Google Scholar
22. Karabacak, T., Senkevich, J. J., Wang, G. C. and Lu, T. M., J Vac Sci Technol A 23 (4), 986990 (2005).Google Scholar
23. Alagoz, A., Kamminga, J., Grachev, S. Y., Lu, T.-M. and Karabacak, T., MRS Proceedings 1224-FF05-22 6(2009).Google Scholar
24. Ohara, S., Suzuki, J., Sekine, K. and Takamura, T., J Power Sources 119, 591596 (2003).Google Scholar
25. Sauerbrey, G., Zeitschrift für Physik A Hadrons and Nuclei 155 (2), 206222 (1959).Google Scholar
26. Li, H., Huang, X. J., Chen, L. Q., Zhou, G. W., Zhang, Z., Yu, D. P., Mo, Y. J. and Pei, N., Solid State Ionics 135 (1-4), 181191 (2000).Google Scholar
27. Guo, H., Zhao, H. L., Yin, C. L. and Qiu, W. H., Mat Sci Eng B-Solid 131 (1-3), 173176 (2006).Google Scholar
28. Chen, L. B., Xie, J. Y., Yu, H. C. and Wang, T. H., J Appl Electrochem 39 (8), 11571162 (2009).Google Scholar