Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:40:52.525Z Has data issue: false hasContentIssue false

Design, Synthesis and Characterization of New Bimechanistic Optical Power Limiters Based on Reverse Saturable and Two-photon Absorption

Published online by Cambridge University Press:  10 February 2011

C. W. Spangler
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
E. H. Elandaloussi
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
B. Ozer
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
K. Ashworth
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
L. Madrigal
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
B. Reeves
Affiliation:
Department of Chemistry and Biochemistry, Optical Technology Center, Montana State University, Bozeman, MT 59717, uchcs@montana.edu
Get access

Abstract

During the past five years there has been considerable progress in the design of organic materials for optical power limiting (OPL) applications. One of the more promising and widely studied material approaches involves reverse saturable absorption (RSA) from various excited states. We have recently been examining the efficacy of utilizing highly absorbing photogenerated charge states for RSA. Both polaronic radical cations and bipolaronic dications are possible candidates for this mode of optical limiting. Equally intriguing are new approaches to designing chromophores with large two-photon absorption (TPA) cross-sections. For some pulse durations the effective two-photon cross-section for bis-(diphenylamino)diphenylpolyenes, and dendrimers based on these repeat units, are extraordinaryly large, indicative of excited state absorption. In this presentation we will discuss the possibility of combining these two optical limiting mechanistic paradigms in single structures, which may then be considered as bimechanistic optical power limiters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderberg, B. and Walbarsht, M. L., Weapons, Laser: The Dawn of a New Military Age, Plenum Press, New York, 1992.Google Scholar
2. Miller, M. J., Mott, A. G. and Ketchel, B. P., Proc. SPIE 3472, 24(1998).Google Scholar
3. Fisher, M. M., Veyret, B. and Weiss, K., Chem. Phys. Lett. 28, 60(1974).Google Scholar
4. Spangler, C. W., J. Mater. Chem. 9, 2013(1999).Google Scholar
5. Su, W. and Cooper, T. M., Chem. Mater. 10, 264(1998).Google Scholar
6. Wei, T. H., Hagan, D. J., Spence, M. J., Van Stryland, E. W., Perry, J. W. and Coulter, D. R., Appl. Phys. B54, 46 (1992).Google Scholar
7. Perry, J. W., Mansour, K., Marder, S. R., Perry, K. J., Alvarez, D. and Choong, I., Opt. Lett. 19, 625 (1994).Google Scholar
8. Coulter, D. R., Miskowski, V. M., Perry, J. W., Wei, T. H., Van Stryland, E. W., and D, Hagan, J., Proc. SPIE 1105, 42(1989).Google Scholar
9. Spangler, C. W., McCoy, R. K., Dembek, A. A., Sapochak, L. andd Gates, B. D., J. Chem. Soc.Perkin Trans 1, 151(1989).Google Scholar
10. Spangler, C. W., Liu, P.-K., Dembek, A. A. and Havelka, K. O. J. Chem. Soc. Perkin Trans. 1, 799 (1991).Google Scholar
11. Spangler, C. W. and He, M.Q., J. Chem. Soc. Perkin Trans. 1, 715(1995).Google Scholar
12. Spangler, C. W. and He, M. Q., in Handbook of Conductive Molecules and Polymers: Vol. 2.Conductive Polymers: Synthesis and Electrical Properties, edited by Nalwa, H. S., John Wiley and Sons, Ltd., Chichester, 1997, pp. 389414.Google Scholar
13. Spangler, C. W., in Handbook of Conducting Polymers, edited by Skotheim, T., Elsenbaumer, R. and Reynolds, J., Marcal Dekker, Inc., New York, 1998, pp 743763.Google Scholar
14. Spangler, C., Faircloth, T., Elandaloussi, E. H. and Reeves, B., Mat. Res. Soc. Symp. Proc. 488, 283 (1989).Google Scholar
15. Saraciftci, N. S. and Heeger, A. J., in Handbook of Organic Conductive Molecules and Polymers: Vol. 1: Charge-Transfer salts, Fullerenes and Photoconductors, edited by Nalwa, H. S., John Wiley and Sons, Ltd., Chichester, 1997, pp. 414455.Google Scholar
16. Saraciftci, N. S., Smilowitz, L., Heeger, A. J. and Wudl, F., Science 258, 1474(1994).Google Scholar
17. Janssen, R. A. J., Chnrstiaans, M. P. T., Hare, C., Martin, N., Saraciftci, N. S., Heeger, A. J. and Wudl, F., J. Chem Phys. 102, 2628(1995).Google Scholar
18. Ashworth, K., Spangler, C. and Reeves, B., Proc. SPIE 3796, 170(1999).Google Scholar
19. Sonnenberg, W., Hyfield, A., Short, K., Spangler, L. and Spangler, C., Mat. Res. Soc. Symp.Proc. (submitted).Google Scholar
20. Bader, M., Moser, J., Li, H., Tarter, S. and Spangler, C., Mat. Res. Soc. Symp. Proc.(submitted).Google Scholar
21. Elandaloussi, E. H. and Spangler, C. W., Polym. Preprints 39(2), 1055 (1998).Google Scholar