No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
Very high surface area nanostructured metal electrodes are of interest as efficient current collectors. For thin film devices, the nanostructured metal can be grown in place using electrodeposition or electroless deposition. For larger devices metal electrodes structured at more than one length scale are desirable. Self-assembling surfactant templates are a versatile method of generating a range of nanostructures. As we report here, electrodeposition of nickel, cobalt and copper from liquid crystalline solutions of Triton X-100 produces a number of nanostructures, with significant surface area increases. Electrodeposition into templates with microstructure has proven more demanding. Oil-in-water Microemulsions of Tween surfactants and soy oil, produce micrometer scale structures, however measured nickel surface area does not scale with sample thickness. The method is also not robust, and was found to give microstructures only for nickel and cobalt. Experiments show that under our conditions a combination of nickel metal, nickel acetate and nickel/detergent microstructures are formed.