Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T06:48:57.096Z Has data issue: false hasContentIssue false

Dilute Group III-AsN: Bonding of Nitrogen in GaInAsN and AlGaAsN on GaAs and Realization of Long Wavelength (2.3 μm) GaInAsN QWs on InP

Published online by Cambridge University Press:  11 February 2011

D. Serries
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany; E-mail: joachim.wagner@iaf.fhg.de
T. Geppert
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany; E-mail: joachim.wagner@iaf.fhg.de
K. Köhler
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany; E-mail: joachim.wagner@iaf.fhg.de
P. Ganser
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany; E-mail: joachim.wagner@iaf.fhg.de
J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany; E-mail: joachim.wagner@iaf.fhg.de
Get access

Abstract

Recent results on the local bonding of nitrogen in dilute GaInAsN and AlGaAsN on GaAs are reviewed, revealing that bonding of nitrogen in GaInAsN is controlled by an interplay between bond cohesive energy and reduction of local strain. Thus, III-N bonding in GaInAsN can be changed from Ga-N to In-N by post-growth thermal annealing. In AlGaAsN, in contrast, nitrogen bonds preferentially to Al, i.e. Al-N bonds are formed, due to the much larger cohesive energy of the Al-N bond. Further, results on indium-rich highly strained GaInAsN quantum wells on InP substrate are reported, showing room-temperature photoluminescence at wavelengths up to 2.3 μm. This result demonstrates the potential of high indium content dilute GaInAsN for InP-based long wavelength diode lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. 35, 1273 (1996).Google Scholar
2. For a recent review see, e.g., Harris, J. S., Semicond. Sci. Technol. 17, 880 (2002);Google Scholar
Riechert, H., Ramakrishnan, A., and Steinle, G., Semicond. Sci. Technol. 17, 892 (2002).Google Scholar
3. Wagner, J., Geppert, T., Köhler, K., Ganser, P., and Herres, N., J. Appl. Phys. 90, 5027 (2001).Google Scholar
4. Geppert, T., Wagner, J., Köhler, K., Ganser, P., and Maier, M., Appl. Phys. Lett. 80, 2081 (2002).Google Scholar
5. See, e.g., Wang, J., Maiorov, M., Jeffries, J. B., Garbuzov, D. Z., Connolly, J. C., and Hanson, R. K., Meas. Sci. Technol. 11, 1576 (2000).Google Scholar
6. Wagner, J., Köhler, K., Ganser, P., and Herres, N., Appl. Phys. Lett. 77, 3592 (2000).Google Scholar
7. Alt, H. Ch., Egorov, A. Yu., Riechert, H., Wiedemann, B., Meyer, J. D., Michelmann, R. W., and Bethge, K., Appl. Phys. Lett. 77, 3331 (2000).Google Scholar
8. Kurtz, Sarah, Webb, J., Gedvilas, L., Friedman, D., Geisz, J., Olson, J., King, R., Joslin, D., and Karam, N., Appl. Phys. Lett. 78, 748 (2001).Google Scholar
9. Harrison, W. A., Electronic Structure and Properties of Solids (Dover, New York, 1989), p. 176.Google Scholar
10. Kim, K. and Zunger, A., Phys. Rev. Lett. 86, 2609 (2001).Google Scholar
11. Klar, P. J., Grüning, H., Koch, J., Schäfer, S., Volz, K., Stolz, W., Heimbrodt, W., Kamal Saadi, A. M., Lindsay, A., and O'Reilly, E. P., Phys. Rev. B 64, 121203–1 (2001).Google Scholar
12. See, e.g., Pritchard, R. E., Newman, R. C., Wagner, J., Fuchs, F., Jones, R., Öberg, S., Phys. Rev. B 50, 10628 (1994).Google Scholar
13. Wagner, J., Geppert, T., Köhler, K., Ganser, P., and Maier, M., to appear in Solid State Electron.Google Scholar
14. Feng, Z. C., Perkowitz, S., Kinell, D. K., Whitney, R. L., and Talwar, D. N., Phys. Rev. B 47, 13466 (1993).Google Scholar
15. Here the frequency difference rather than absolute mode frequencies is used as a measure for the apparent Al-content, as this difference is less sensitive to changes in the strain state due to the incorporation of nitrogen. This is because the strain dependence of the difference frequency is determined by the difference in the LO1 and LO2 phonon deformation potentials rather than by the phonon deformation potential itself.Google Scholar
16. Gokhale, M. R., Wei, J., Wang, H., and Forrest, S. R., Appl. Phys. Lett. 74, 1287 (1999).Google Scholar
17. Bellaiche, L., Appl. Phys. Lett. 75, 2578 (1999).Google Scholar
18. Ubukata, A., Dong, J., Matsumoto, K., and Ishihara, Y., Jpn. J. Appl. Phys. 39, 5962 (2000).Google Scholar
19. Serries, D., Geppert, T., Ganser, P., Maier, M., Köhler, K., Herres, N., and Wagner, J., Appl. Phys. Lett. 80, 2448 (2002).Google Scholar
20. Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
21. Shan, W., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, S. R., and Nauka, C., Phys. Rev. B 62, 4211 (2000).Google Scholar
22. Krijn, M. P. C. M., Semicond. Sci. Technol. 6, 27 (1991).Google Scholar