Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:17:47.446Z Has data issue: false hasContentIssue false

Discovery of a High Spin Freezing Temperature and Control of a Spin-Glass State in Mg1.5FeTi0.5O4 Spinel Films

Published online by Cambridge University Press:  10 February 2011

Y. Muraoka
Affiliation:
ISIR-Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
H. Tabata
Affiliation:
ISIR-Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
T. Kawai
Affiliation:
ISIR-Sanken, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Get access

Abstract

A spin-glass state up to 210 K has been found in (Mg,Fe){Mg,Fe,Ti)2O4 spinel ferrite thin films formed on α-Al2O3(0001) substrates. The long-time relaxation of the magnetization in zero-field-cooled operation, which is characteristic feature of the spin-glass state, has been observed below 210 K. We have also achieved the change of magnetic state in the film from spin-glass to ferrimagnet over a wide temperature range below 160 K by means of light-irradiation. The amount of spin-melt on light-irradiation is calculated to be 41 % at 10 K and 26 % at 100 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edwards, S. F. and Anderson, P. W, J. Phys. F 5, 965 (1975).Google Scholar
2. Hubsch, J. and Gavoille, G., Phys. Rev. Lett. 26, 3815 (1982).Google Scholar
3. Cai, J-W., Wang, C., Shen, B-G., Zhao, J-G., and Zhan, W-S., Appl. Phys. Lett. 71, 1721 (1997).Google Scholar
4. Cannella, V. and , Mydosh, Phys. Rev. B 6, 4220 (1972).Google Scholar
5. Burke, S. K. and Rainford, B. D., J. Phys. F 13, 451 (1983).Google Scholar
6. Huang, F. S., Bieman, L. H., Graaf, A. M. De, and Rechenberg, H. R., J. Phys. C 11, L271 (1978).Google Scholar
7. Syono, Y, Ito, A., and Horie, G., J. Phys. Soc. Jpn. 46, 793 (1979).Google Scholar
8. Yoshurun, Y., Salamon, M. B., Rao, K. V., and Chen, H. S., Phys. Rev. Lett. 45, 1366 (1981).Google Scholar
9. Muraleedharan, K., Srivastava, J. K., Marathe, V R., and Vijayaraghavan, R., J Phys. C: Solid State Phys. 18, 5355 (1985).Google Scholar
10. Okuno, S. N., Hashimoto, S., Inomata, K., Morimoto, S., and Ito, A., J. Appl. Phys. 69, 5072 (1991).Google Scholar
11. Sherrington, D. and Kitkpatrick, S., Phys. Rev. Lett. 35, 1792 (1975).Google Scholar
12. Kitkpatrick, S. and Sherrington, D., Phys. Rev. B 17, 4384 (1978).Google Scholar
13. Ayadi, M. and Ferré, J., Phys. Rev. Lett. 50, 274 (1983).Google Scholar
14. Rei, L., Jung, J.-S., Ferré, J., and O'Connor, C.-J., J. Phys. Chem. Solids 54, 1 (1993).Google Scholar
15. Morris, B. W., Colborne, S. G., Moore, M. A., Bray, A. J., and Canisius, J., J. Phys. C: Solid State Phys. 19, 1157 (1986).Google Scholar
16. Brand, R. A., Gibert, H. G., Hubsch, J., and Heller, J. A., J Phys. F.: Met. Phys. 15, 1987 (1985).Google Scholar
17. Groenou, A. Broese Van, Bongers, P. F, and Stuyts, A. L., Mater Sci. Eng. 3, 317 (1968/1969)Google Scholar
18. Grave, E. De, Govaert, A., Chambaere, D., and Robbrecht, G., Physica 96B, 103 (1979).Google Scholar