Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T20:32:14.731Z Has data issue: false hasContentIssue false

Dislocation-mediated Mechanisms of Mass Transport around Nanoindentations in Fcc Metals

Published online by Cambridge University Press:  11 February 2011

Oscar Rodríguez de la Fuente
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, SPAIN
Esther Carrasco
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, SPAIN
Miguel A. González
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, SPAIN
Juan M. Rojo
Affiliation:
Departamento de Física de Materiales, Universidad Complutense, 28040 Madrid, SPAIN
Get access

Abstract

We present evidence for the operation on reconstructed Au(001) of a novel mechanism, involving dislocation motion, which is much more efficient than surface diffusion to redistribute mass around nanoindentations. Cross-slip of individual dislocations generated around the indentation point, with a screw component perpendicular to the surface, is shown to be responsible for the generation of multiple-storied, crystallographically-oriented terraces around the nanoindentation points. We also show that standard dislocation theory can be used to quantitatively describe the characteristics of the dislocations involved in the different processes around the nanoindentation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kelchner, C.L., Plimpton, S. J. and Hamilton, J.C., Phys. Rev. B 58, 11 085 (1998);Google Scholar
Kiely, J.D. and Houston, J.E., Phys. Rev. B 57, 12 588 (1998)Google Scholar
2. Li, J., Van Vliet, K.J., Zhu, T., Yip, S. and Suresh, S., Nature (London), 418, 307 (2002)Google Scholar
3. Rodríguez de la Fuente, O., Zimmerman, J.A., González, M.A., De la Figuera, J., Hamilton, J.C., Pai, W.W. and Rojo, J.M. Phys. Rev. Lett., 88, 036101 (2002)Google Scholar
4. De la Figuera, J., González, M.A., García-Martínez, R., Rojo, J.M., Hernán, O.S., Vázquez de Parga, A.L., Miranda, R., Phys. Rev. B. 58, 1169 (1998)Google Scholar
5. Details of this calculation are reported in: Rodríguez de la Fuente, O., González, M.A. and Rojo, J.M., Philos. Mag. (in press, 2002)Google Scholar
6. Hirth, J.P. and Lothe, J., Theory of Dislocations, 2nd Edition, (Wiley, New York 1982), Appendix 1.Google Scholar
7. Christiansen, J., Morgenstern, K., Schiptz, J., Jacobsen, K.W., Braun, K.F., Rieder, K.H., Laegsgaard, E. and Besenbacher, F., 2002, Phys. Rev. Lett., 88, 206106.Google Scholar