Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T11:22:56.216Z Has data issue: false hasContentIssue false

Domain Structure of a Unique Bacterial Red Light Photoreceptor as Revealed by Atomic Force Microscopy

Published online by Cambridge University Press:  27 February 2014

Blaire A. Sorenson
Affiliation:
Northeastern Illinois University, Department of Chemistry, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Daniel J. Westcott
Affiliation:
Northeastern Illinois University, Department of Biology, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Alexandra C. Sakols
Affiliation:
Northeastern Illinois University, Department of Chemistry, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
J. Santoro Thomas
Affiliation:
Northeastern Illinois University, Department of Chemistry, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Perry Anderson
Affiliation:
Northeastern Illinois University, Department of Biology, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Emina A. Stojković
Affiliation:
Northeastern Illinois University, Department of Biology, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Stefan Tsonchev
Affiliation:
Northeastern Illinois University, Department of Chemistry, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Kenneth T. Nicholson
Affiliation:
Northeastern Illinois University, Department of Chemistry, 5500 N. St. Louis Ave., Chicago, IL 60625, U.S.A.
Get access

Abstract

Bacteriophytochromes (BphPs) are red-light photoreceptors found in photosynthetic and nonphotosynthetic bacteria that have been recently engineered as infrared fluorescent tissue markers. Light-induced, global structural changes are proposed to originate within their covalently bound biliverdin chromophore and propagate through the protein. Classical BphPs undergo reversible photoconversion between spectrally distinct light absorbing states, red (Pr) and far-red (Pfr), respectively. RpBph3 (P3), from Rhodopseudomonas palustris, photoconverts between a Pr and a unique near-red (Pnr) light-absorbing state. Due to size and photosensitivity of BphPs, structures of the intact proteins have not been resolved by nuclear magnetic resonance and/or X-ray crystallography. Therefore, structural details about the light and dark-adapted structures of the intact BphPs are not well understood at the molecular level. We have utilized fluid cell atomic force microscopy (AFM) to investigate the domain structure of intact P3 in its light-adapted state (Pnr). By varying the concentration of the protein, deposition time, and the ionic strength of the buffer, the aggregation of P3 on a mica surface can be controlled and single dimers may be observed in a biologically relevant media. Domain resolution has been achieved for several orientations of the dimer on the surface. The structural dimensions of the dimer have been compared to a modeled BphP in its intact form generated using PyMOL software. AFM experiments are currently underway to analyze the dark-adapted state (Pr) of P3 in order to observe the anticipated structural changes. Ultimately, the goal is to use AFM and other surface analytical methods such as scanning tunneling microscopy and electron microscopy to gain new insight into the unique photochemistry of P3.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Noack, S., Michael, N., Rosen, R. and Lamparter, T., Biochemistry 46, 41644176 (2007).CrossRefGoogle Scholar
Noack, S. and Lamparter, T., Methods of Enzymology 423, 203221 (2007).CrossRefGoogle Scholar
Rockwell, N. C., Su, Y. S. and Lagarias, J. C., Annual Reviews in Plant Biology 57, 837856 (2006).CrossRefGoogle Scholar
Rockwell, N. C. and Lagarias, J. C., The Plant Cell 18, 414 (2006).CrossRefGoogle Scholar
Rockwell, N. C., Shang, L., Martin, S. S. and Lagarias, J. C., P. Natl. Acad. Sci. USA 106, 61236127 (2009).CrossRefGoogle Scholar
Filonov, G. S., Piatkevich, K. D., Ting, L.-M., Zhang, J., Kim, K. and Verkhusha, V. V., Nature Biotechnology 29, 757761 (2011).CrossRefGoogle Scholar
Bhoo, S. H., Davis, S. J., Walker, J., Karniol, B. and Vierstra, R. D., Nature 414, 776779 (2001).CrossRefGoogle Scholar
Ulijasz, A. T., Cornilescu, G., Cornilescu, C. C., Zhang, J., Rivera, M., Markley, J. L. and Vierstra, R. D., Nature 463, 250256 (2010).CrossRefGoogle Scholar
Toh, K. C., Stojkovic, E. A., Rupenyan, A. B., van Stokkum, I. H., Salumbides, M., Groot, M. L., Moffat, K. and Kennis, J. T., J. Phys. Chem. A (2010).Google Scholar
Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G. and Hansma, P. K., Nature: Structural Biology 7(8), 644648 (2000).Google Scholar
Sturgis, J. N., Tucker, J. D., Olsen, J. D., Hunter, C. N. and Niederman, R. A., Biochemistry 48(17), 36793698 (2009).CrossRefGoogle Scholar
Tobias, F. G., Gawedzka, A., Goldmeier, M. S., Sakols, A. C., Stojkovic, E. A., Tsonchev, S. and Nicholson, K. T., Online Proceedings of the Materials Research Society 1465 (2012).Google Scholar
Li, H., Zhang, J., Vierstra, R. and Li, H., P. Natl. Acad. Sci. USA 107(24), 1087210877 (2010).CrossRefGoogle Scholar
The PyMOL Molecular Graphics System, Version 1.5.0.1 Schrödinger, LLC.Google Scholar
Yang, X., Kuk, J. and Moffat, K., P. Natl. Acad. Sci. USA 105, 1471514720 (2008).CrossRefGoogle Scholar
Yang, X., Stojkovic, E. A., Kuk, J. and Moffat, K., P. Natl. Acad. Sci. USA 104, 1257112576 (2007).CrossRefGoogle Scholar
Necas, D. and Klapetek, P., Cent. Eur. J. Phys. 10(1), 181188 (2012).Google Scholar
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L. and Schulton, K., J. Comp. Chem. 26, 17811802 (2005).CrossRefGoogle Scholar
Voss, N. R. and Gerstein, M., Nucleic Acids Research 38, W555W562 (2010).CrossRefGoogle Scholar
Bizzarri, A. R. and Cannistraro, S., J. Phys. Chem. B 113(52), 1644916464 (2009).CrossRefGoogle Scholar
Heyes, C. D., Kobitski, A. Y., Amirgoulova, E. V. and Nienhaus, G. U., J. Phys. Chem. B 108, 1338713394 (2004).CrossRefGoogle Scholar