Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T18:45:24.875Z Has data issue: false hasContentIssue false

Effect of Microcavity Structures on the Photoluminescence of Silicon Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Marc G. Spooner
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia.
Timothy M. Walsh
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia.
Robert G. Elliman
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia.
Get access

Abstract

ptical microcavity structures containing Si nanocrystals are fabricated by plasma enhanced chemical vapour deposition (PECVD) of SiO2, Si3N4 and SiOx layers. The nanocrystals are formed within Si-rich oxide layers (SiOx) by precipitation and growth, and the microcavity structures defined by two parallel distributed Bragg mirrors (DBM) made from either alternate SiO2/Si3N4 layers or alternate SiO2/SiOx layers. In the latter case, Si nanocrystal layers form part of the DBM structure thereby providing a distributed emission source. The optical emission from these and related structures are examined and compared with that from isolated nanocrystal layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Polman, A., Hoven, G. N. van den, Custer, J. S., Shin, J. H., Serna, R., and Alkemade, P. F. A., J. Appl. Phys. 1256, 1256 (1995).Google Scholar
2 Priolo, F., Franzo, G., Coffa, S., Polman, A., Bellani, V.,Carnera, A., and Spinella, C., Mat. Res. Soc. Symp. Proc. 397, 397 (1994).Google Scholar
3 McKinty, C. N., Kirkby, K. J., Homewood, K. P., Edwards, S. P., Shao, G., Valizadeh, R., and Colligon, J. S., Nucl. Instr. Meth. B 179, 179 (2002).Google Scholar
4 Ragan, R., Min, K. S., and A, H. A.. Mat. Sci. & Eng. B 204, 204 (2001).Google Scholar
5 Ng, W. L.., A, L. M.., M, G. R.., S, L.., G, S.., and P, H. K.., Nature 192, 192 (2001).Google Scholar
6 Canham, L. T., Appl. Phys. Lett. 1045, 1045 (1990).Google Scholar
7 Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
8 Kovalev, D., KHeckler, H., Polisski, G., and Koch, F., Phys. Stat. Sol. B 871, 871 (1999).Google Scholar
9 Chryssou, C. E., Kenyon, A. J., Iwayama, T. S., Pitt, C.W., and Hole, D. E., Appl. Phys. Lett. 2011, 2011 (1999).Google Scholar
10 Franzo, G., Pacifici, D., Vinciguerra, V., and Priolo, F., Appl. Phys. Lett. 2167, 2167 (2000).Google Scholar
11 Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 2325, 2325 (2000).Google Scholar
12 Watanabe, K., Fujii, M., and Hayashi, S., J. Appl. Phys. 4761, 4761 (2001).Google Scholar
13 Pavesi, L. and Mulloni, V., J. Luminescence 45, 45 (1999).Google Scholar
14 Iacona, F., Fanzo, G., Moreira, E. C., Pacifici, D.,Irrera, A., and Priolo, F., Mat. Sci. Eng. C377, 377 (2002).Google Scholar
15 Iacona, F., Fanzo, G., Moreira, E. C., and Priolo, F., J. Appl. Phys. 8354, 8354 (2001).Google Scholar
16 Deenapanray, P. N. K. and Jagadish, C., Electrochem. Solid-State Lett. 4, G11 (2001).Google Scholar
17 Iacona, F., Franzo, G., and Spinella, C., J. Appl. Phys. 1295, 1295 (2000).Google Scholar