Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T03:54:30.343Z Has data issue: false hasContentIssue false

Effects of dislocations and sub-grain boundaries on X-ray response maps of CdZnTe radiation detectors

Published online by Cambridge University Press:  11 August 2011

A. Hossain
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
A. E. Bolotnikov
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
G. S. Camarda
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
Y. Cui
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
R. Gul
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
K. Kim
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
B. Raghothamachar
Affiliation:
Stony Brook University, Stony Brook, NY, USA
G. Yang
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
R. B. James
Affiliation:
Brookhaven National Laboratory, Upton, NY, USA
Get access

Abstract

The imperfect quality of CdZnTe (CZT) crystals for radiation detectors seriously diminishes their suitability for different applications. Dislocations and other dislocation-related defects, such as sub-grain boundaries and dislocation fields around Te inclusions, engender significant charge losses and, consequently, cause fluctuations in the detector’s output signals, thereby hindering their spectroscopic responses. In this paper, we discuss our results from characterizing CZT material by using a high-spatial-resolution X-ray response mapping system at BNL’s National Synchrotron Light Source. In this paper, we emphasize the roles of these dislocation-related defects and their contributions in degrading the detector’s performance. Specifically, we compare the effects of the sub-grain- and coherent twin-boundaries on the X-ray response maps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bolotnikov, A. E., Babalola, S., Camarda, G. S., Cui, Y., Gul, R., Egarievwe, S. U., Fochuk, P. M., Fuerstnau, M., Hossain, A., Jones, F., Kim, K. H., Kopach, O. V., Marchini, L., Raghothamachar, B., Taggart, R., Yang, G., Xu, L., and James, R. B., “Correlations between crystal defects and performance of CdZnTe detectors”, accepted for IEEE Trans. Nucl. Sci., NS, 2011.Google Scholar
2. Saucedo, E., Rudolph, P. and Dieguez, E., J. Cryst. Growth 310, p. 2067, 2008.Google Scholar
3. Carini, G. A., Bolotnikov, A. E., Camarda, G. S., Wright, G. W., Li, L., and James, R. B., “Effect of Te inclusions on the performance of CdZnTe detectors", Appl. Phys. Lett. 88, p.143515, 2006.Google Scholar
4. Camarda, G. S., Bolotnikov, A. E., Carini, G. A., and James, R. B., “Effects of Tellurium inclusions on charge collection in CZT Nuclear Radiation Detectors”, in Countering Nuclear and Radiological Terrorism, edited by Aprkyan, S. and Diamond, D., Springer, 2006, pp. 199207.Google Scholar
5. Camarda, G. S., Abdul-Jabbar, N. M., Babalola, S., Bolotnikov, A. E., Cui, Y., Hossain, A., Jackson, E., Jackson, H., James, J. R., Luryi, A. L., Groza, M., Burger, A., and James, R. B., “Characterization and Measurements of CZT Material: Novel Techniques and Results”, in Proceedings of SPIE Hard X-Ray and Gamma-Ray Detector Physics IX, Vol. 6706, edited by James, R. B., Burger, A. and Franks, L. A. (SPIE, Bellingham, WA, 2007), 670605.Google Scholar
6. Bolotnikov, A. E., Camarda, G. S., Cui, Y., Hossain, A., Yang, G., Yao, H. W., and James, R. B., “Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping”, IEEE Trans. Nucl. Sci., NS 56, n. 3, pp. 791794, 2009.Google Scholar
7. Hossain, A., Bolotnikov, A. E., Camarda, G. S., Cui, Y., Yang, G., and James, R. B., Defects in cadmium zinc telluride crystals revealed by etch-pit distributions, Journal of Crystal Growth 310 (2008) 44934498.Google Scholar