No CrossRef data available.
Article contents
Effects of Grain Boundaries on Performance of Hydrogenated Nanocrystalline Silicon Solar Cells
Published online by Cambridge University Press: 01 February 2011
Abstract
We investigate the effect of hydrogenation of grain boundaries on the performance of solar cells for hydrogenated nanocrystalline silicon (nc-Si:H) thin films. Using hydrogen effusion, we found that the amplitude of the lower temperature peak in the H-effusion spectra is strongly correlated to the open-circuit voltage in solar cells. This is attributed to the hydrogenation of grain boundaries in the nc-Si:H films.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
1
Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett.
65, 860 (1994).Google Scholar
2
Yue, B. Yan G., and Guha, S., in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, edited by Chu, Virginia, Miyazaki, Seiichi, Nathan, Arokia, Yang, Jeffrey, and Zan, Hsiao-Wen (Mat. Res. Soc. Symp. Proc. 989, Pittsburgh, PA, 2007) pp. 335.Google Scholar
3
Xu, X., Yan, B., Beglau, D., Li, Y., DeMaggio, G., Yue, G., Banerjee, A., Yang, J., Guha, S., Hugger, P., and Cohen, D., in Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, edited by Nathan, Arokia, Flewitt, Andrew, Hou, Jack, Miyazaki, Seiichi, and Yang, Jeffrey (Mater. Res. Soc. Symp. Proc. 1066, Pittsburgh, PA, 2008) pp. 325
Google Scholar
4
Ganguly, G., Yue, G., Yan, B., Yang, J., Guha, S., in Conf. Record of the 2006 IEEE 4th World Conf. on Photovoltaic Energy Conversion, Hawaii, USA, May 7-12, 2006, p.1712.Google Scholar
5
Su, T., Ju, T., Yan, B., Yang, J., Guha, S., and Taylor, P. C., J. Non-Cryst. Solids, 354, 2231 (2008)Google Scholar
7
Kondo, M., et al., in Proceedings of 31st IEEE PVSC (IEEE, New York, 2005) pp. 1377 (and references therein).Google Scholar
8
Finger, F., Prasad, K., Dubail, S., Shah, A., Tang, X.-M, Weber, J., and Beyer, W., in Amorphous Silicon Technology, edited by Madan, A., Hamakawa, Y., Thompson, M., Taylor, P. C., and LeComber, P. G. (Mat. Res. Soc. Symp. Proc. 219, Pittsburgh, PA, 1991) pp. 383.Google Scholar
9
Beyer, W., Harpke, P., and Zasreow, U., in Amorphous and Microcrystalline Silicon Technology, edited by Schiff, E.A., Hack, M., Wagner, S., Schropp, R., Shimizu, I. (Mater. Res. Soc. Symp. Proc. 467, Pittsburgh, PA, 1997) pp.343.Google Scholar
11
Guha, S., Yang, J., Banerjee, A., Yan, B., Lord, K., Sol. Ener. Mater. Sol Cells, 78, 329 (2003) (and references therein).Google Scholar
12
Mahan, A. H., Yang, J., Guha, S., and Williamson, D. L., Phys. Rev.
B 61, 1677 (2000).Google Scholar
13
Yue, G., Yan, B., Ganguly, G., Yang, J., Guha, S., Teplin, C. W., and Williamson, D., in Conf. Record of the 2006 IEEE 4th World Conf. on Photovoltaic Energy Conversion, Hawaii, USA, May 7-12, pp. 1588 (and references therein).Google Scholar
14
Beyer, W., in Tetrahedrally-Bonded Amorphous Semiconductors, edited by Adler, S. D. and Fritzshe, H.H. (Plenum, New York, 1985) pp.129.Google Scholar
15
Stradins, P., Young, D., Yan, Y., Iwaniczko, E., Xu, Y., Reedy, R., Branz, H., and Wang, Q., Appl. Phys. Lett.
89, 121921 (2006).Google Scholar