Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T07:02:53.775Z Has data issue: false hasContentIssue false

Effects of Pressure on the Flow and Fracture of Polycrystalline NiAl

Published online by Cambridge University Press:  01 January 1992

R. W. Margevicius
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
J. J. Lewandowski
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
I. E. Locci
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
G. M. Michal
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
Get access

Abstract

The effects of testing NiAl in tension under a superimposed pressure are described. The flow stress decreases when subjected to pressure due to the generation of mobile dislocations. These dislocations can become pinned when subjected to aging at moderate temperatures and times. The ductility increases substantially when tested under a superimposed hydrostatic pressure. A new method for performing fracture toughness tests under superimposed pressure is also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ball, A. and Smallman, R. E., Acta Met. 14, 1349 (1966).Google Scholar
2 Ball, A. and Smallman, R. E., Acta Met. 14, 1517 (1966).Google Scholar
3 Wasilewski, R. J., Butler, S. R., and Hanlon, J. E., Trans. Met. Soc. AIME 239, 1357 (1967).Google Scholar
4 Schulson, E. M. and Barker, D. R., Scripta Met. 17, 519 (1983).Google Scholar
5 Baker, I., Nagpal, P., Liu, F., and Monroe, P. R., Acta Met. et Mat. 39, 1637 (1991).Google Scholar
6 Hahn, K. H. and Vedula, K., Scripta Met. 23, 7 (1989).Google Scholar
7 Raj, S. V., Noebe, R. D., and Bowman, R. R., Scripta Met. 23, 2049 (1989).Google Scholar
8 Field, R. D., Lahrman, D. F., and Darolia, R., Acta Met. et Mat. 39, 2961 (1991).Google Scholar
9 Margevicius, R. W. and Lewandowski, J. J, Scripta Met. et Mat. 25, 2017 (1991).Google Scholar
10 Margevicius, R. W., Locci, I., and Lewandowski, J. J, Scripta Met. et Mat. 26, 1733 (1992).Google Scholar
11 Margevicius, R. W. and Lewandowski, J. J, Acta Met. et Mat., 41, 485 (1993).Google Scholar
12 Lewandowski, J.J., Michal, G. M., Locci, I., and Rigney, J. D., Proc. Mat Res. Symp. (edited by Stocks, G. M and Pope, D.) MRS Pittsburgh, Pa, 341 (1990)Google Scholar
13 Margevicius, R. W. and Lewandowski, J. J, unpublished research (1993).Google Scholar
14 Bullen, F. P., Henderson, F., Wain, H. L., and Patterson, M. S., Phil. Mag. 9, 803 (1964).Google Scholar
15 Mellor, H. G. and Wronski, A. S., Ocean Eng. 1 233 (1969).Google Scholar
16 Hahn, G. T., Acta Met. 10, 727 (1962).Google Scholar
17 Bullen, F. P., Henderson, F., Hutchison, M. M., and Wain, H. L., Phil. Mag. 9, 285 (1964).Google Scholar
18 Besag, F. M. C. and Bullen, F. P., Phil. Mag. 10, 41 (1964).Google Scholar
19 Margevicius, R. W. and Lewandowski, J. J, Scripta Met. et Mat. submitted (1992)Google Scholar
20 Margevicius, R. W. and Lewandowski, J. J, in preparation (1993).Google Scholar
21“Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials,” E399, Annual Book of ASTM Standards, Vol. 0301, ASTM, Philadelphia, PA, 788 (1984).Google Scholar